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. Outline

* Optimal Control

* Model-based Approaches vs. Model-free Approaches
* Sampling-based Optimization

e Reinforcement Learning

* Conclusion
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. Recap: Trajectory Optimization

Find a control sequence {a;} that generates a
state sequence {s;} start from s, minimizes

T—1
min h(sy;) + z h(ss, a;)
t=0

simulated trajectory

subject to

f(St» at) —S;p1 =0 for0<t<T minimize accumulated tracking error:

7 g~
[Equations Mv + C(x,v) = f_|_]T/1} z” /{k — "’A\_ || + ...
t

of motion  g(x,v) >0
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Feedforward Control

. Recap
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. Recap




Feedback Control

. Recap

Feedback
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Recap: Feedback Control

Find a control policy 7 (s;, t) that computes

actions a; to generate a state sequence {s;} G T T T RS B o e
start from s, that minimizes aeTTE TR [P i DG
L TNl | SN
i i A S s
. tive | . . .
minh(s) + Y. h(se,ar) T ]
t=0 o

subject to

f(St,at)—SH_l:O for0<t<T

Equations M+ C(x,v) = f+JTA
of motion  g(x,v) >0
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. Optimal Control

Open-loop Control: Feedback Control:
given a start state s;, compute sequence of for any state s; at time t, find the corresponding
actions {a,} to reach the goal action a; = (s, t) that eventually reach the goal

_________ O Ot O—», ST
= O o C;
,,,,,,,,,, O o
[0 e ——— Cf!" Cf

T-1
min h(sy) + Z h(s;, az)
t=0

subjectto  f(s;,a;) —Sppq =0 for0<t<T
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. Optimal Control

Open-loop Control: Feedback Control:
given a start state s;, compute sequence of for any state s; at time t, find the corresponding
actions {a,} to reach the goal action a; = (s, t) that eventually reach the goal

~ \\\ S
________ < o> 0977
__________ N J
M —————————— % ~~~~~~~~~ Cﬂ"’/
O iy
T—1
: min h(s) + Z h(s,, a .
Trajectory (s7) £ (s¢, ae) S—

Optimization Programming
subjectto  f(s;,a;) —Sppq =0 for0<t<T
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. Constrained Optimization

Libin Liu - SIST, Peking University

GAMES 105 - Fundamentals of Character Animation

y

A

10




. Const

rained Optimization

min f (x)
s.t. gx)=0
< b

Soft constr

aint?
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. Constrained Optimization

min f (x)
s.t. gx)=0
< b

Soft constraint?

| // \ (y) = 0
+
min f(x) +wg(x) . C/\\ \ \ |

)

* The solution x® may not satisfy the constraint

12
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. Constrained Optimization

min f (x)

s.t. gx)=0

~ A\ ¢ glx,y) =0
£(x,y) @ ' \ \ ’
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. Constrained Optimization

min f (x)

s.t. gx)=0

x is optimal

2

f'(x) is parallel to g'(x) Flx,y)
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. Constrained Optimization

min f (x)

s.t. gx)=0

x is optimal

N
f'(x) is parallel to g'(x) Flx,y)
ffx)+2g'(x) =0

Libin Liu - SIST, Peking University GAMES 105 - Fundamentals of Character Animation



. Lagrange Multiplier

Lagrange function

L(x,2) = f(x) + 2" g(x)

x is optimal

N
f'(x) is parallel to g'(x) Flx,y)
ffx)+2g'(x) =0

Libin Liu - SIST, Peking University GAMES 105 - Fundamentals of Character Animation



. Lagrange Multiplier

min f(x)
Lagrange function x

L(x, ) = () + ATg (x) s.t. g(x) =0

We have the necessary condition
for optimality:

oL

— ="+ Tg' () = 0

oL

> =9(x) =0 fey)
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. Lagrange Multiplier

min f(x)
Lagrange function x

L(x, ) = () + ATg (x) s.t. g(x) =0

We have the necessary condition
for optimality:

f'(x) is parallel to g'(x)

oL

=@+ ATg () = 0

a_L _ g(x) —0 the original constraints f(x,v)
oA
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. Solving Trajectory Optimization Problem

Find a control sequence {a;} that generates
a state sequence {s;} start from s, minimizes

T—1
min h(s;) + z h(s;, a;)
t=0

subject to

f(sg,ar) — S =0

for0<t<T

19
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. Solving Trajectory Optimization Problem

Find a control sequence {a,} that generates The Lagrange function
a state sequence {s;} start from s, minimizes

T-1
T-1 L(s,a, 1) = h(s7) + z h(se, ap) + At (f(Se, @) = Ses1)
t=0
min h(s;) + z h(s;, a;)
t=0

subject to

f(se,ar) —sp41 =0

for0<t<T

20
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. Solving Trajectory Optimization Problem

Find a control sequence {a,} that generates The Lagrange function
a state sequence {s;} start from s, minimizes

T—1
L(s,a,1) = h(sy) + z h(se a;) + /1’11;+1(f(5t: ar) — St41)
t=0

T-1
min h(s;) + z h(s;, a;) .
t=0 oL dh( ) — A= 0
dsy ds °T T
subject to T
oL 6h( )+<af( )) ) 1 =0
= Sg, a —(s¢,a — Ay =
f(st,ar) —se41 =0 ds; 0s " ds e
T
oL 0h of
for0<t<T 3a, =50 (sg,ap) + <£ (s¢, at)> Aex1 =0
oL
H_At = f(spa) —St41 =0

21
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. Solving Trajectory Optimization Problem

T—1
min h(sy) + 2 h(s;, a;) The Lagrange function
t=0

subject to

T—1
L(s,a,1) = h(sy) + z h(se, ar) + /1’11;+1(f(5t: ar) — Se+1)
f(St, at) - St+1 =0 fOr 0 <t< T t=0

- -
dL dh
dSt - ds (s7) = 4r =0
oL  dh of !
ds, = 35 (s¢,ae) + (% (s¢, at)) Aty1 — A4 =0
T
dL oh of
9a, =34 (sg,ap) + <£ (St at)) Aty1 =0
dL
a_At = f(sg,ar) —Sgr1 =0

22
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. Solving Trajectory Optimization Problem

T—1
min h(sy) + 2 h(s;, a;) The Lagrange function
t=0

subject to

T—1
L(s,a,1) = h(sy) + z h(se, ar) + /1’11;+1(f(5t: ar) — Se+1)
f(St, at) - St+1 =0 fOr 0 <t< T t=0

I I
dL dh
sy ds (sp) —Ar =0
oL  dh of !
95, = 39 (s¢,ae) + (% (s¢, at)) Aty1 — A4 =0
T
oL oh of
9a, = 7a (s, ap) + <£ (St, at)) Aey1 =0
dL
St+1 = f (S, ar) ¢> EYN = f(sp,ar) —Se41 =0
¢

23

Libin Liu - SIST, Peking University GAMES 105 - Fundamentals of Character Animation .



. Solving Trajectory Optimization Problem

T—1
min h(sy) + 2 h(s;, a;) The Lagrange function
t=0

subject to

T—1
L(s,a,1) = h(sy) + z h(se, ar) + /1’11;+1(f(5t: ar) — Se+1)
f(St, at) - St+1 =0 fOr 0 <t< T t=0

I I
dL dh
I =hi(sr) < g = gg Gr) —Ar =0
oL  dh of !
95, = 39 (s¢,ae) + (% (s¢, at)) Aty1 — A4 =0
T
oL oh of
9a, = 7a (e ag) + <£ (S¢, at)) Aty1 =0
dL
St41 = f (e, ar) ¢> EYR = f(5t,atr) —Sg41 =0
¢

24
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. Solving Trajectory Optimization Problem

T—1
min h(sy) + 2 h(s;, a;) The Lagrange function
t=0

subject to

T—1
L(s,a,1) = h(sy) + z h(se, ar) + /1’11;+1(f(5t: ar) — Se+1)
f(St, at) - St+1 =0 fOr 0 <t< T t=0

- = - =
oL dh
I =hi(sr) < g = gg Gr) —Ar =0
r dL  dh of !
Ae = hs(s, a) + (ﬁsf(st: at)) At+1 ¢> ds, ~ Bs (¢, ap) + (% (St at)) Adey1 =4 =0
T
oL 0dh of
9a, =34 (se,a) + <£ (S, at)) Aty1 =0
L
St41 = f (e, ar) ¢> EYR = f(5t,atr) —Sg41 =0
t

25
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. Solving Trajectory Optimization Problem

T—1
min h(sy) + 2 h(s;, a;) The Lagrange function
t=0

subject to

T—1
L(s,a,1) = h(sy) + z h(se, ar) + /1’11;+1(f(5t: ar) — Se+1)
f(St, at) - St+1 =0 fOr 0 <t< T t=0

= e
oL dh
= h! = — A =0
A is also called “costate” Ar = hs(sr) ¢> dsr ds (s7) = Ar
r dL  dh of !
Ae = hs(s, a) + (ﬁsf(st: at)) At+1 ¢> ds, ~ Bs (¢, ap) + (% (St at)) Adey1 =4 =0
T
oL 0h of
da, = 9a (s, ap) + <£ (St, at)) Adev1 =10
oL
St41 = f (e, ar) ¢> EYR = f(5t,atr) —Sg41 =0
t

26
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. Solving Trajectory Optimization Problem

T-1
min h(sy) + z h(s;, a;)
t=0

subject to

f(St,at)_St+1:0 fOrOSt<T

- =

G

Ae = hg(se, ae) + (ﬁs’(st» at))T/lt+1 ¢

Ar = hs(s7)

A is also called “costate”

. !/ !/ T
a; = argmin ha(se,ar) + (fa(se,ar)) Aesa ¢

V

N
N

Stv1 = f(se ar) ¢

Libin Liu - SIST, Peking University
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The Lagrange function

T—1
L(s,a,1) = h(sy) + z h(se a;) + /1’11;+1(f(5t: ar) — St41)
t=0

I
dL dh
35y = ds (sp) =47 =0
oL  dh of !
95, = 39 (s¢,ae) + (% (s¢, at)) Aty1 — A4 =0
T
oL oh of
oa, = 7a (g, ap) + <£ (¢, at)) Aty1 =0
dL
a_lt = f(sg,ar) —Sgr1 =0

27
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. Pontryagin's Maximum Principle for discrete systems

T-1
min h(sy) + Z h(s;, a;)
t=0

subject to

f(St,at)_St+1:0 forOSt<T

e ML
(- )
A is also called “costate” Ar = hi(s7)
1. =h / T/'{ '
¢ = hg(se,a) + (fs (St at)) t+1 Lev Semyonovich Pontryagin

C !/ !/ T
d¢ = dlgmin ha (s ar) + (fa (St, at)) At+1

Sev1 = f(Se,ae)
- J

28
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. Pontryagin's Maximum Principle for discrete systems

T-1
min h(sy) + Z h(s;, a;)
t=0

subject to

f(St,at)_St+1:0 fOFOSt<T

o ” . — /
costate” dynamics Ar = hg(st) Lev Semyonovich Pontryagin

29
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. Pontryagin's Maximum Principle for discrete systems

T-1
min h(sy) + Z h(s;, a;)
t=0

subject to

f(St,at)_St+1:0 forOSt<T

- =
T N Shooting method:
Ste1 = [ (St ar) Given initial control {a,}, iteratively update them by

oo ,.\ . Forward pass: compute {5,} using

“costate” dynamics Ar = hs(st) Spa1 = f(spay), t=0,..,T—1

Ay = hL(sy, ap) + (fs’(st» at))T/lt+1‘_§-~ * Backward pass: compute {A;} using

................................ Ar = hg(sr)

a; = argminhy(sg, a) + (fa (se, at))TAHl e = hi(sea0) + (F(50.a)) Aepr, t=T—1,...,0
(O — a s ————————— e — Update {a,} using gradient descent

30

Libin Liu - SIST, Peking University GAMES 105 - Fundamentals of Character Animation .



. Optimal Control

Open-loop Control:

given a start state sy, compute sequence of
actions {a,} to reach the goal

Trajectory T-1
Optimization min h(sy) + Z h(s:, az)
t=0

Pontryagin’s

subject to — = forO0<t<T
Maximum Principle J f(se,ar) = sg41 =0

31
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Optimal Control

Open-loop Control:

Shooting method directly applies PMP. However, it
given a start state sy, compute sequence of does not scale well to complicated problems such
actions {a,} to reach the goal as motion control...

Need to be combined with collocation method,
multiple shooting, etc. for those problems.

Or use derivative-free approaches.

Trajectory T-1
Optimization min h(sy) + Z h(s:, az)
t=0

Pontryagin’s

subject to — = forO0<t<T
Maximum Principle J f(se,ar) = sg41 =0

32
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. Optimal Control

Open-loop Control:

given a start state sy, compute sequence of
actions {a,} to reach the goal

Maximum Principle

Libin Liu - SIST, Peking University

subjectto  f(s;,a;) —Sppq =0 for0<t<T

Feedback Control:

for any state s; at time t, find the corresponding
action a; = (s, t) that eventually reach the goal

~~~~~~ O ( O_"/,’ r
T L) I —— o C;
____________ OS;({'
(}r! ------------------- Cy
Trajectory r-1
Optimization min h(sy) + Z h(s;, a;) :
£ Dynamic
Pontryagin’s Programming

33
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. Dynamic Programming

Find a path {s;} that minimizes

goal

JGs0) = ) st 5e41)
t=0

34
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. Dynamic Programming

Find a sequence of action {a;} that minimizes

goal

JGs0) = ) hlsear)
t=0

subject to

St+1 = f (S, ar)

35
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. Dynamic Programming

Find a policy a; = m (s, t) that minimizes

goal

JGs0) = ) hlsear)
t=0

subject to

St+1 = f (S, ar)

36
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. Dynamic Programming

Find a policy a; = m(s;) that minimizes

goal

JGs0) = ) hlsear)
t=0

subject to

St+1 = f (S, ar)

37
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. Bellman’s Principle of Optimality

Ao 3
S N ...

An optimal policy has the property that whatever the initial
state and initial decision are, the remaining decisions must
constitute an optimal policy with regard to the state resulting
from the first decision.

Richard E. Bellman

38
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Bellman’s Principle of Optimality

Ao 3
S N ...

An optimal policy has the property that whatever the initial
state and initial decision are, the remaining decisions must

constitute an optimal policy with regard to the state resulting
from the first decision.

Richard E. Bellman

* The problem is said to have optimal substructure

39
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Bellman’s Principle of Optimality

Value of a state IV (s):

Richard E. Bellman

e the minimal total cost for finishing the task starting from s

8

* the total cost for finishing the task starting from s using the optimal policy

40
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Bellman’s Principle of Optimality

S~
~
~
~~
~~
~<
~
~
~
~~
~<
~~
~<
~~
~
~~
~~
~~
~
~

Value of a state IV (s):

Richard E. Bellman

e the minimal total cost for finishing the task starting from s

8

* the total cost for finishing the task starting from s using the optimal policy

41
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Bellman’s Principle of Optimality

S~
~
~
~~
~~
~<
~
~
~
~~
~<
~~
~<
~~
~
~~
~~
~~
~
~

Value of a state IV (s):

Richard E. Bellman

e the minimal total cost for finishing the task starting from s

8

* the total cost for finishing the task starting from s using the optimal policy

42
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. The Bellman Equation

The value function is then

goal
So=S

V(s) = mﬂinz h(s;, a;)
t=0

43
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. The Bellman Equation

The value function is then

goal

So=S

V(s) =min ) h(s, a;)
1l ; t» At
¥

V(so) = minz h(s,, ar)
T
t=0

= min| h(sy, ay) + minz: h(s;, a;)
Qo A
t=1
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. The Bellman Equation

The value function is then

goal

So=S

V(s) =min ) h(s, a;)
1l ; t» At
¥

V(so) = minz h(s,, ar)
T
t=0

= min| h(sy, ay) + minz h(s;, a;)
Qo A
t=1
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. The Bellman Equation

The value function is then

goal
So=S

V(s) =min ) h(s, a;)
1l ; t» At
¥

V(so) = minz h(s,, ar)
T
t=0

— rrcllz)n (h(SO, ao) + V(Sl — f(SOr aO)))

46
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. The Bellman Equation

Mathematically, an optimal value function V(s) can be defined recursively as:

V(s) = mC}n (h(s, a) + V(f(s, a)))

47

Libin Liu - SIST, Peking University GAMES 105 - Fundamentals of Character Animation .



. The Bellman Equation

Mathematically, an optimal value function V(s) can be defined recursively as:
V' (s) = min (h(s, a) + V(f(s, a)))
a

If we know this value function, the optimal policy can be computed as

n(s) = arg main (h(s, a) + V(f(s, a)))

48
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. The Bellman Equation

Mathematically, an optimal value function V(s) can be defined recursively as:
V' (s) = min (h(s, a) + V(f(s, a)))
a

If we know this value function, the optimal policy can be computed as

n(s) = arg main (h(s, a) + V(f(s, a)))
Or,

n(s) = arg ma%n Q(s,a)

where Q(s,a) = h(s,a) + V(f(S, a)) Q-function

State-action value function

49
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. The Bellman Equation

Mathematically, an optimal value function V(s) can be defined recursively as:

Learning V(s) and/or Q(s, a) is
V' (s) = min (h(s, a) + V(f(g, a))) the core of optimal control /
a

reinforcement learning methods

If we know this value function, the optimal policy can be computed as

This arg max can be easily \

: computed for discrete control
n(s) = arg min (h(s, a) + V(f(s, a))) Sroblems.
Or But there are not always
’ closed-forms solution for
TL'(S) = arg min Q(S, a) continuous control probIems.J
a

where Q(s,a) = h(s,a) + V(f(S, a)) Q-function

State-action value function

Libin Liu - SIST, Peking University GAMES 105 - Fundamentals of Character Animation



. Optimal Control

Open-loop Control:

given a start state sy, compute sequence of
actions {a,} to reach the goal

Libin Liu - SIST, Peking University

Feedback Control:

for any state s; at time t, find the corresponding
action a; = (s, t) that eventually reach the goal

______ O o> O—>9 r
O S () S EE—— o C;
,,,,,,,,,,,, T
(}r! ................... ny
Trajectory T-1 Dynamic?
Optimization min h(sy) + Z h(s;, a.) Programming
S t=0 Bellman’s Principle
subject to — = for0<t<T f Optimalit
Maximum Principle ’ fse,ae) = Seq =0 or Uptimality

51
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. Linear Quadratic Regulator (LQR)

T-1
min h(ST) + z h(St; at) objective function
t=0

subject to

f(se,at) —Se41 =0

for0<t<T

dynamic function

* LQR is a special class of optimal control problems with
* Linear dynamic function
e Quadratic objective function

52
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A very simple example

N N
f= kp (X —x) — kqv min Z(sin(tn) —x,)% + z X2
{Xn,vnxn}
n=0 n=0
target ________________________________________ X S.t. Un+1 = Un + h(kp (fn — xn) - kdvn)
height
f Xn+1 = Xn + AVpyq

Compute a target trajectory x(t)
such that the simulated trajectory x(t)
is a sine curve.
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. Linear Quadratic Regulator (LQR)

* LQR is a special class of optimal control problems with
* Linear dynamic function
* Quadratic objective function

f=k,(x—x)—kyv

. : target
objective function "Hé—i—éﬁf """"""""""""""""""""
T
min s+Qrsy + Z st Q.S + al Rea,
t=0
subject to
g
St+1 = AtSt + Btat for O S t < T

dynamic function

Libin Liu - SIST, Peking University GAMES 105 - Fundamentals of Character Animation



. Linear Quadratic Regulator (LQR)

The Bellman Equations:

V(s) = main (h(s, a) + V(f(s, a)))

Or,
V(s) = main Q(s,a)

Q(s,a) = h(s,a) + V(f(s, a))

Libin Liu - SIST, Peking University

GAMES 105 - Fundamentals of Character Animation

min s+ Qrsy + z sl Q.sy + alRea,

subject to t=0

St+1 — AtSt + Btat for 0 S t < T
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. Linear Quadratic Regulator (LQR)

Solve for the last step:

— in T _ T
V(sr) = min StQrst = SrQrSr

Libin Liu - SIST, Peking University
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min s+ Qrsy + z sl Q.sy + alRea,

subject to t=0

St+1 — AtSt + Btat for 0 S t < T
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. Linear Quadratic Regulator (LQR)

Solve for the last step:

— in T _ T
V(sr) = min StQrst = SrQrSr

Solve forstep T — 1:

bellman equation

Q(s7—1,ar-1) = S7_1Qr_1S7—1 + ar_1Rp_1ar_1 + V(sy)

T T T
= Sp_1Q7-1S7—1 + ar_1Rr_1ar_1 + sy QrSy

Libin Liu - SIST, Peking University
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0 Sg _________
T
min s+ Qrsy + E sl Q.sy + alRea,
t=0

subject to

St+1 — AtSt + Btat for 0 S t < T
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. Linear Quadratic Regulator (LQR)

Solve for the last step:

— in T _ T
V(sr) = min StQrst = SrQrSr

Solve forstep T — 1:

bellman equation

Q(s7—1,ar-1) = S7_1Qr_1S7—1 + ar_1Rp_1ar_1 + V(sy)

T T T
= Sp_1Q7-1S7—1 + ar_1Rr_1ar_1 + sy QrSy

apply dynamic function

T T
= S7_1Qr-1S7—1 + ar_{Rr_q1a7_4

+ (Ar_1S7—1 + Br_1ar_1)7Qr(Ap_1S7—1 + By_1ar_1)
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0 Sg _________
T
min s+ Qrsy + E sl Q.sy + alRea,
t=0

subject to

St+1 — AtSt + Btat for 0 S t < T
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. Linear Quadratic Regulator (LQR)

Solve for the last step:

— in T _ T
V(sr) = min StQrst = SrQrSr

Solve forstep T — 1:

Q(sy—1,ar—1)

Libin Liu - SIST, Peking University

= S%:—l(QT—l + A’17:—1QTAT—1)ST—1
+ a¥—1(RT—1 + B%—lQTBT—l)aT—l

+2s7_1A7_1QrBr_1ar_4

GAMES 105 - Fundamentals of Character Animation

0 Sg _________
T
min s+ Qrsy + z sl Q.sy + alRea,
subject to t=0

St+1 — AtSt + Btat for 0 S t < T
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. Linear Quadratic Regulator (LQR)

Solve for the last step:

— in T _ T
V(sr) = min StQrst = SrQrSr

Solve forstep T — 1:

Q(sr—1,ar_1) = S%:—l(QT—l + A’IT:—lQTAT—l)ST—l

+ a;’—1(RT—1 + B%—lQTBT—l)aT—l

+2s7_1A7_1QrBr_1ar_4

ar—, = argmin Q(Sy_q, dr_1)

ar-1

-1
= —(RT_1 + B%T_lQTBT_l) Br_1QrAr_157_4

Libin Liu - SIST, Peking University
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min s+ Qrsy + z sl Q.sy + alRea,

subject to t=0

St+1 — AtSt + Btat for 0 S t < T
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. Linear Quadratic Regulator (LQR)

Solve for the last step:

— in T _ T
V(sr) = min StQrst = SrQrSr

Solve forstep T — 1:

Q(sr—1,ar_1) = S%:—l(QT—l + A’17:—1QTAT—1)ST—1

+ a¥—1(RT—1 + B%—lQTBT—l)aT—l

+2s7_1A7_1QrBr_1ar_4

*k
ar_q o
-1

argmin Q(sr—q, ar_1)

—Kr_1S7-1

Linear feedback policy!

1
Kr_1 = (RT—l + B7T"—1QTBT—1) Br_1Q7A7r_4

Libin Liu - SIST, Peking University
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0 Sg _________
T
min s+ Qrsy + z sl Q.sy + alRea,
subject to t=0

St+1 — AtSt + Btat for 0 S t < T
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. Linear Quadratic Regulator (LQR)

Solve for the last step:

— in T _ T
V(sr) = min StQrst = SrQrSr

Solve forstep T — 1:

Q(sr—1,ar_1) = S%:—l(QT—l + A’17:—1QTAT—1)ST—1

+ a¥—1(RT—1 + B%—lQTBT—l)aT—l

+2s7_1A7_1QrBr_1ar_4

V(sr—1) = ngll_rll Q(s7-1,ar-1)

_ T
= Sr—1Pr-1S7-1

Libin Liu - SIST, Peking University GAMES 105 - Fundamentals of Character Animation

Quadratic value function!

Pr_y =

min s+ Qrsy + z sl Q.sy + alRea,

subject to t=0

St+1 — AtSt + Btat for 0 S t < T
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. Linear Quadratic Regulator (LQR)

Solve for the last step:

— in T _ T
V(sr) = min StQrst = SrQrSr

Solve forstept,t =T—-1,T —2,...,0:

— K5S¢

at

Linear feedback policy!

-1
K., = (R + BI' P,y1B;) BTP, 1A,

V(sy) = Szptst

Py = F(Pgyq) = -+

Libin Liu - SIST, Peking University

Quadratic value function!

GAMES 105 - Fundamentals of Character Animation

0 Sg _________
T
min s+ Qrsy + E sl Q.sy + alRea,
t=0

subject to

St+1 — AtSt + Btat for 0 S t < T
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. Linear Quadratic Regulator (LQR)

* LQR is a special class of optimal control problems with
* Linear dynamic function
e Quadratic objective function

 Solution of LQR is a linear feedback policy

T

min S%:QTST + Z StTQtSt + aZRtat a; = —K;:s;
t=0

subject to

_ T —1nT
Ses1 = Aese + Bray for0<t<T Ke = (Re + B{ Pes1Be) ~Bi PrsrAe

64
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. Linear Quadratic Regulator (LQR)

* LQR is a special class of optimal control problems with
* Linear dynamic function
e Quadratic objective function

* How to deal with
* Nonlinear dynamic function?
* Non-quadratic objective function?

65
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. Linear Quadratic Regulator (LQR)

* Nonlinear problems

T-1
min z h(s;, a;) objective function
t=0

subject to

f(sy,a) —sgp1 =0 for0<t<T dynamic function

66
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. Linear Quadratic Regulator (LQR)

* Nonlinear problems

min z h(s;, a;) objective function

subject to

f(sy,a) —sgp1 =0 for0<t<T dynamic function

Approximate cost function as a quadratic function:

s 11s, — 5,17 S
h(s, a.) = h(5,,a,) + Vh(S,, a,) [ L at] + 5 [az B dj V2h(5,, a,) [ L at]

67
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. Linear Quadratic Regulator (LQR)

* Nonlinear problems

min z h(s;, a;) objective function

subject to

f(sy,a) —sgp1 =0 for0<t<T dynamic function

Approximate cost function as a quadratic function:

h(s;,a;) = h(s;, a;) + Vh(s,, a;) [ _ at] ~la [ St] VZh(s,, a;) [ _ at]

Approximate dynamic function as a linear function: Or a quadratic function:
Flsad) ~ f(S0a) + VfGna) |20 3 yep(s,an [T
t»A¢) = J (St A v A (g — a, f(Stfat)"’***_l'Z a, — f (S ar) a, — @,
iLQR: iterative LQR DDP: Differential Dynamic Programming 638
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. Locomotion Using Optimal Control

[Muico et al 2011 - Composite Control of
Physically Simulated Characters]
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. Model-based Method vs. Model-free Method

T-1
min z h(s;, a;) objective function

subject to t=0
See1 = f(sp,ar)  for0<t<T dynamic function

What if the dynamic function f (s, a) is not know?
What if the dynamic function f (s, a) is not accurate?
What if the system has noise?

What if the system is highly nonlinear?

70
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. Sampling-based Policy Optimization

* [terative methods

 Goal: find the optimal policy (s; 8) that minimize the objective () = X.;—¢ h(st, a;)
* Initialize policy parmeters w(x; 0)
* Repeat:

* Propose a set of candidate parameters {6;} according to 6

 Simulate the agent under the control of each m(6;)

 Evaluate the objective function J(8;) on the simulated state-action sequences

 Update the estimation of 8 based on {J(8;)}

71
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. Sampling-based Policy Optimization

* [terative methods

 Goal: find the optimal policy (s; 8) that minimize the objective () = X.;—¢ h(st, a;)
* Initialize policy parmeters w(x; 0)
* Repeat:

* Propose a set of candidate parameters {6;} according to 6

 Simulate the agent under the control of each m(6;)

 Evaluate the objective function J(8;) on the simulated state-action sequences

 Update the estimation of 8 based on {J(8;)}

* Example: CMA-ES

72
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. Example: Locomotion Controller with Linear Policy

-

2

1
-
.
W
| o
0

a8’

[Liu et al. 2012 — Terrain Runner]

73
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. Stage 1a: Open-loop Policy

Find open-loop control using SAMCON

T

reference states

reference actions

~/

74/44
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. Stage 1b: Linear Feedback Policy

oa=Mds + a

75/44
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. Stage 1b: Linear Feedback Policy

change in control change in states
\ /A
oal=Mds+ a
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. Stage 1b: Reduced-order Closed-loop Policy

M,, M

Sp

ap -

change in control change in states
\ /A
oal=MJds+ a
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. Stage 1b: Reduced-order Closed-loop Policy

Libin Liu - SIST, Peking University

Mgy, -

M

Sp

change in control

oa

=

oa

change in states

/

M

0S

+ a

oS

reduced-order state

Mg,

Mg,

78/44
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. Manually-selected States: s

* Running: 12 dimensions
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. Manually-selected Controls: a

* for all skills: 9 dimensions

v
- — —
v——-’-

-
I
P“‘4

80/44
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. Optimization

oa = Mds + a

* Optimize M
* CMA, Covariance Matrix Adaption ([Hansen 2006])

* For the running task:
* Hoptimization variables: 12*9 =108 / (12*3+3*9) = 63
* 12 minutes on 24 cores

81/44
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. Example: Locomotion Controller with Linear Policy

-

2

1
-
.
W
| o
0

a8’

[Liu et al. 2012 — Terrain Runner]
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. Optimal Control <» Reinforcement Learning

* RL shares roughly the same overall goal with Optimal Control

max 2 r(ss az)

t=0

33
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. Optimal Control <» Reinforcement Learning

* RL shares roughly the same overall goal with Optimal Control

max 2 r(ss az)

t=0
* But RL typically does not assume perfect knowledge of system

t =0

34
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. Optimal Control <» Reinforcement Learning

* RL shares roughly the same overall goal with Optimal Control

max 2 r(ss az)

t=0
* But RL typically does not assume perfect knowledge of system

t =O

* RL can still take advantage of a system model 2 model-based RL
* The model can be learned from data
St+1 = f (s, ae;0)
85
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. Markov Decision Process (MDP)

E Agent g E Environment

S

36
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. Markov Decision Process (MDP)

SO Sl Sz nan
l ; l ; State s, Action a;
Ao 251

Policy a; ~ (- |s;)
action a Transition probability
. Reward = r(s,,
[ Agent . [EnVIronmentﬂl ewar re = 1(St, ar)
2/

\/ et R = Z ytr(st, ar)
t

state s, reward r
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. Markov Decision Process (MDP)

action a

Trajectory
T= 1Sy Qg S; QA1 Sy . /\

[ Agenté [Environment
Reward £
r(seal) = | :_I:\’ = [ \_/

. B

S

state s

38
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. Markov Decision Process (MDP)

MDP is a discrete-time stochastic control process.
It provides a mathematical framework for modeling decision making in situations
where outcomes are partly random and partly under the control of a decision maker.

State St Action a;
Policy a; ~ m(-|ss)
Transition probability

Se+1 ~ P(- IS, ap)

Reward 1 = 1(s¢ az)

Return R = z]/tr(st, at)
t

39
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. Markov Decision Process (MDP)

MDP is a discrete-time stochastic control process.

It provides a mathematical framework for modeling decision making in situations
where outcomes are partly random and partly under the control of a decision maker.

A MDP problem:
M ={S,Ap,r}

S: state space

A: action space

Libin Liu - SIST, Peking University GAMES 105 - Fundamentals of Character Animation

State St €S Action a; €A
Policy a; ~ m(-|ss)
Transition probability

Ser1 ~ P( ISt ap)

Reward 7: = 7(5¢ ae)

Return R = Z vir(se, ag)
t
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. Markov Decision Process (MDP)

MDP is a discrete-time stochastic control process.
It provides a mathematical framework for modeling decision making in situations
where outcomes are partly random and partly under the control of a decision maker.

A MDP problem:

M ={S,Ap,r}

Solve for a policy m(a|s) that optimize
the expected return

J = E|R]

: : t
Overall all trajectories T ={sy, ag, Sy, aq, = }

induced by

Libin Liu - SIST, Peking University

ET~T[ z )/tT(St, at)

GAMES 105 - Fundamentals of Character Animation

State St €S Action a; €A
Policy a; ~ m(-|ss)
Transition probability

St+1 ~ P( : |St» at)
Reward 7: = 7(5¢ ae)

Return R = Z vir(se, ag)
t
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. Bellman Equations

In optimal control:

Value function: V(s) = main (h(S, a) +V(f(s, a)))

Optimal policy: n(s) = arg main (h(s, a) + V(f(s, a)))

Optimal Q-function / Q(s,a) = h(s,a) + V(f(s, a))

state-action value function:

92
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. Bellman Equations

In optimal control:

Value function: V(s) = main (h(S, a) +V(f(s, a)))

Optimal policy: n(s) = arg main (h(s, a) + V(f(s, a)))

Optimal Q-function / Q(s,a) = h(s,a) + V(f(s, a))

state-action value function:

In RL control:

Value function for a policy m: Vi(s) = E._;lr(s,a) + V(s')] This is not necessarily optimal

Q-function for a policy m: Q™(s,a) =r(s,a) + [V(s")]

93
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. How to Solve MDP

e VValue-based Methods

 Learning the value function/Q-function using the Bellman equations
e Evaluation the policy as

n(s) = arg mczn Q(s,a)

* Typically used for discrete problems

 Example: Value iteration, Q-learning, DQN, ...

94
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. How to Solve MDP

DQN [Mnih et al. 2015, Human-level control through deep reinforcement learning]

Convolution Convolution Fully connected
h A h
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. Multi-skill Characters

o >
° {)).

[Liu et al. 2017: Learning to Schedule Control Fragments ] 96
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. How to Solve MDP

* Policy Gradient approach
 Learning the value function/Q-function using the Bellman equations

 Compute approximate policy gradient according to value functions using Monte-Carlo
method

Update the policy using policy gradient

Suitable for continuous problems

Example: REINFORCE, TRPO, PPO, ...

97
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How to Solve MDP

—— e — —

[Liu et al. 2016. ControlGraphs] [Liu et al. 2018] [Peng et al. 2018. DeepMimic]
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. Multi-skill Characters

State Machines of
Tracking Controllers
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Generative Control Policies

[Yao et al. Control VAE]
Libin Liu - SIST, Peking University GAMES 105 - Fundamentals of Character Animation



. What’s Next?

* Digital Cerebellum — Large Pretrained Model for Motion Control

¥
»
3

=E
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. What’s Next?

* Cross-modality Generation
¢ & LLM & Text/Audio < Motion/Control <& Image/Video <
 Digital Actor?

Hello, ChatGPT. I want you to act as a public speaking coach.

I will provide you with a speech transcript. Then, you need to
provide detailed suggestions about gesture style in a
parenthetical after each sentence...

The speech transcript is “I'm glad to come here. We are brave
enough to face all challenges. ”

“T'm glad to come here (stand tall and relaxed with open posture).
We are brave enough to face all challenges (stand confidently @

with feet shoulder-width apart and hands on hips or in fists).”
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. What’s Next

103
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That’s all for GAMES 105
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