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Recap: Trajectory Optimization

3

min ℎ 𝑠𝑇 +

𝑡=0

𝑇−1

ℎ 𝑠𝑡 , 𝑎𝑡



𝑡

− +⋯

minimize accumulated tracking error:

reference trajectories 

simulated trajectory 

subject to

𝑓 𝑠𝑡 , 𝑎𝑡 − 𝑠𝑡+1 = 0

Find a control sequence 𝑎𝑡 that generates a 
state sequence 𝑠𝑡 start from 𝑠0 minimizes

𝑀 ሶ𝒗 + 𝐶 𝒙, 𝒗 = 𝒇 + 𝐽𝑇𝜆

𝑔 𝒙, 𝒗 ≥ 0

Equations 
of motion

for 0 ≤ 𝑡 < 𝑇
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Recap: Feedforward Control

4

ෝ𝑚1 ෝ𝑚2 ෝ𝑚3 ෝ𝑚4 ෝ𝑚5 ෝ𝑚6

time

Target Poses/
Joint Angles

𝑠0
𝑠𝑒

𝑠1

Simulation
States

𝛿𝑡

𝒞1 𝒞2
:

PD-servos

Simulator

perturbation

time
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Recap: Feedback Control

5

ෝ𝑚1 ෝ𝑚2 ෝ𝑚3 ෝ𝑚4 ෝ𝑚5 ෝ𝑚6

𝑡

𝑠0
𝑠𝑒

𝑠1

𝑎1
𝑎2

time

Target Poses/
Joint Angles

Simulation
States

𝛿𝑡

𝒞1 𝒞2
:

𝑠2

𝑎3

𝑎4
𝑎5

𝑎6

𝑠3
𝑠4

𝑠5
𝑠6

𝜋1
𝜋2

Feedback 
Actions

corrective
offset

𝜋1 𝜋2 𝜋3 𝜋4 𝜋5 𝜋6

time
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Recap: Feedback Control

6

ෝ𝑚1 ෝ𝑚2 ෝ𝑚3 ෝ𝑚4 ෝ𝑚5 ෝ𝑚6

𝑡

𝑠0
𝑠𝑒

𝑠1

𝑎1
𝑎2

time

Target Poses/
Joint Angles

Simulation
States

𝛿𝑡

𝒞1 𝒞2
:

𝑠2

𝑎3

𝑎4
𝑎5

𝑎6

𝑠3
𝑠4

𝑠5
𝑠6

𝜋1
𝜋2

Feedback 
Actions

corrective
offset

𝜋1 𝜋2 𝜋3 𝜋4 𝜋5 𝜋6

time
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Recap: Feedback Control

7

minℎ 𝑠𝑇 +

𝑡=0

𝑇−1

ℎ 𝑠𝑡 , 𝑎𝑡

subject to

𝑓 𝑠𝑡 , 𝑎𝑡 − 𝑠𝑡+1 = 0

Find a control policy 𝜋 𝑠𝑡 , 𝑡 that computes 
actions 𝑎𝑡 to generate a state sequence 𝑠𝑡
start from 𝑠0 that minimizes

𝑀 ሶ𝒗 + 𝐶 𝒙, 𝒗 = 𝒇 + 𝐽𝑇𝜆

𝑔 𝒙, 𝒗 ≥ 0

Equations 
of motion

for 0 ≤ 𝑡 < 𝑇
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Optimal Control

8

Open-loop Control: Feedback Control:

given a start state 𝑠0, compute sequence of 
actions 𝑎𝑡 to reach the goal

for any state 𝑠𝑡 at time 𝑡, find the corresponding 
action 𝑎𝑡 = 𝜋 𝑠𝑡 , 𝑡 that eventually reach the goal

𝑠0

𝑠𝑇

𝑎0
𝑎1

𝑎2

𝑎3
𝑠𝑇

minℎ 𝑠𝑇 +

𝑡=0

𝑇−1

ℎ 𝑠𝑡 , 𝑎𝑡

subject to 𝑓 𝑠𝑡 , 𝑎𝑡 − 𝑠𝑡+1 = 0 for 0 ≤ 𝑡 < 𝑇
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Optimal Control

9

Open-loop Control: Feedback Control:

given a start state 𝑠0, compute sequence of 
actions 𝑎𝑡 to reach the goal

for any state 𝑠𝑡 at time 𝑡, find the corresponding 
action 𝑎𝑡 = 𝜋 𝑠𝑡 , 𝑡 that eventually reach the goal

𝑠0

𝑠𝑇

𝑎0
𝑎1

𝑎2

𝑎3
𝑠𝑇

minℎ 𝑠𝑇 +

𝑡=0

𝑇−1

ℎ 𝑠𝑡 , 𝑎𝑡

subject to 𝑓 𝑠𝑡 , 𝑎𝑡 − 𝑠𝑡+1 = 0 for 0 ≤ 𝑡 < 𝑇

Trajectory
Optimization

Dynamic
Programming
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Constrained Optimization

10

min
𝑥

𝑓 𝑥

𝑠. 𝑡. 𝑔 𝑥 = 0

𝑥

𝑦

𝑔 𝑥, 𝑦 = 0

𝑓 𝑥, 𝑦
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Constrained Optimization

11

min
𝑥

𝑓 𝑥

𝑠. 𝑡. 𝑔 𝑥 = 0

Soft constraint?

min
𝑥

𝑓 𝑥 + 𝑤𝑔 𝑥

𝑥

𝑦

𝑔 𝑥, 𝑦 = 0

𝑓 𝑥, 𝑦
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Constrained Optimization

12

min
𝑥

𝑓 𝑥

𝑠. 𝑡. 𝑔 𝑥 = 0

Soft constraint?

min
𝑥

𝑓 𝑥 + 𝑤𝑔 𝑥

* The solution 𝑥∗ may not satisfy the constraint
𝑥

𝑦

𝑔 𝑥, 𝑦 = 0

𝑓 𝑥, 𝑦
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Constrained Optimization

13

min
𝑥

𝑓 𝑥

𝑠. 𝑡. 𝑔 𝑥 = 0

𝑥

𝑦

𝑔 𝑥, 𝑦 = 0

𝑓 𝑥, 𝑦

𝑔′ 𝑥

𝑓′ 𝑥
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Constrained Optimization

14

min
𝑥

𝑓 𝑥

𝑠. 𝑡. 𝑔 𝑥 = 0

𝑥 is optimal 



𝑓′ 𝑥 is parallel to 𝑔′ 𝑥
𝑥

𝑦

𝑔 𝑥, 𝑦 = 0

𝑓 𝑥, 𝑦

𝑔′ 𝑥

𝑓′ 𝑥
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Constrained Optimization

15

min
𝑥

𝑓 𝑥

𝑠. 𝑡. 𝑔 𝑥 = 0

𝑥 is optimal 

𝑓′ 𝑥 is parallel to 𝑔′ 𝑥

𝑓′ 𝑥 + 𝜆𝑔′ 𝑥 = 0



𝑥

𝑦

𝑔 𝑥, 𝑦 = 0

𝑓 𝑥, 𝑦

𝑔′ 𝑥

𝑓′ 𝑥
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Lagrange Multiplier 

16

𝑥 is optimal 

𝑓′ 𝑥 is parallel to 𝑔′ 𝑥

𝑓′ 𝑥 + 𝜆𝑔′ 𝑥 = 0

Lagrange function

𝐿 𝑥, 𝜆 = 𝑓 𝑥 + 𝜆𝑇𝑔(𝑥)

min
𝑥

𝑓 𝑥

𝑠. 𝑡. 𝑔 𝑥 = 0

𝑥

𝑦

𝑔 𝑥, 𝑦 = 0

𝑓 𝑥, 𝑦

𝑔′ 𝑥

𝑓′ 𝑥
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Lagrange Multiplier 

17

min
𝑥

𝑓 𝑥

𝑠. 𝑡. 𝑔 𝑥 = 0

Lagrange function

𝐿 𝑥, 𝜆 = 𝑓 𝑥 + 𝜆𝑇𝑔(𝑥)

We have the necessary condition 
for optimality: 

𝜕𝐿

𝜕𝑥
= 𝑓′ 𝑥 + 𝜆𝑇𝑔′ 𝑥 = 0

𝜕𝐿

𝜕𝜆
= 𝑔 𝑥 = 0

𝑥

𝑦

𝑔 𝑥, 𝑦 = 0

𝑓 𝑥, 𝑦

𝑔′ 𝑥

𝑓′ 𝑥
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Lagrange Multiplier 

18

min
𝑥

𝑓 𝑥

𝑠. 𝑡. 𝑔 𝑥 = 0

Lagrange function

𝐿 𝑥, 𝜆 = 𝑓 𝑥 + 𝜆𝑇𝑔(𝑥)

We have the necessary condition 
for optimality: 

𝑓′ 𝑥 is parallel to 𝑔′ 𝑥

the original constraints

𝜕𝐿

𝜕𝑥
= 𝑓′ 𝑥 + 𝜆𝑇𝑔′ 𝑥 = 0

𝜕𝐿

𝜕𝜆
= 𝑔 𝑥 = 0

𝑥

𝑦

𝑔 𝑥, 𝑦 = 0

𝑓 𝑥, 𝑦

𝑔′ 𝑥

𝑓′ 𝑥



GAMES 105 - Fundamentals of Character AnimationLibin Liu - SIST, Peking University

Solving Trajectory Optimization Problem

19

min ℎ 𝑠𝑇 +

𝑡=0

𝑇−1

ℎ 𝑠𝑡 , 𝑎𝑡

subject to

𝑓 𝑠𝑡 , 𝑎𝑡 − 𝑠𝑡+1 = 0

Find a control sequence 𝑎𝑡 that generates 
a state sequence 𝑠𝑡 start from 𝑠0 minimizes

for 0 ≤ 𝑡 < 𝑇
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Solving Trajectory Optimization Problem

20

min ℎ 𝑠𝑇 +

𝑡=0

𝑇−1

ℎ 𝑠𝑡 , 𝑎𝑡

subject to

𝑓 𝑠𝑡 , 𝑎𝑡 − 𝑠𝑡+1 = 0

Find a control sequence 𝑎𝑡 that generates 
a state sequence 𝑠𝑡 start from 𝑠0 minimizes

for 0 ≤ 𝑡 < 𝑇

The Lagrange function

𝐿 𝑠, 𝑎, 𝜆 = ℎ 𝑠𝑇 +

𝑡=0

𝑇−1

ℎ 𝑠𝑡 , 𝑎𝑡 + 𝜆𝑡+1
𝑇 𝑓 𝑠𝑡 , 𝑎𝑡 − 𝑠𝑡+1
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Solving Trajectory Optimization Problem

21

min ℎ 𝑠𝑇 +

𝑡=0

𝑇−1

ℎ 𝑠𝑡 , 𝑎𝑡

subject to

𝑓 𝑠𝑡 , 𝑎𝑡 − 𝑠𝑡+1 = 0

Find a control sequence 𝑎𝑡 that generates 
a state sequence 𝑠𝑡 start from 𝑠0 minimizes

for 0 ≤ 𝑡 < 𝑇

The Lagrange function

𝐿 𝑠, 𝑎, 𝜆 = ℎ 𝑠𝑇 +

𝑡=0

𝑇−1

ℎ 𝑠𝑡 , 𝑎𝑡 + 𝜆𝑡+1
𝑇 𝑓 𝑠𝑡 , 𝑎𝑡 − 𝑠𝑡+1

𝜕𝐿

𝜕𝑠𝑇
=
𝑑ℎ

𝑑𝑠
𝑠𝑇 − 𝜆𝑇 = 0

𝜕𝐿

𝜕𝑎𝑡
=
𝜕ℎ

𝜕𝑎
𝑠𝑡 , 𝑎𝑡 +

𝜕𝑓

𝜕𝑎
𝑠𝑡 , 𝑎𝑡

𝑇

𝜆𝑡+1 = 0

𝜕𝐿

𝜕𝑠𝑡
=
𝜕ℎ

𝜕𝑠
𝑠𝑡 , 𝑎𝑡 +

𝜕𝑓

𝜕𝑠
𝑠𝑡 , 𝑎𝑡

𝑇

𝜆𝑡+1 − 𝜆𝑡 = 0

𝜕𝐿

𝜕𝜆𝑡
= 𝑓 𝑠𝑡 , 𝑎𝑡 − 𝑠𝑡+1 = 0
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Solving Trajectory Optimization Problem

22

minℎ 𝑠𝑇 +

𝑡=0

𝑇−1

ℎ 𝑠𝑡 , 𝑎𝑡

subject to

𝑓 𝑠𝑡, 𝑎𝑡 − 𝑠𝑡+1 = 0 for 0 ≤ 𝑡 < 𝑇

The Lagrange function

𝐿 𝑠, 𝑎, 𝜆 = ℎ 𝑠𝑇 +

𝑡=0

𝑇−1

ℎ 𝑠𝑡 , 𝑎𝑡 + 𝜆𝑡+1
𝑇 𝑓 𝑠𝑡 , 𝑎𝑡 − 𝑠𝑡+1

𝜕𝐿

𝜕𝑠𝑇
=
𝑑ℎ

𝑑𝑠
𝑠𝑇 − 𝜆𝑇 = 0

𝜕𝐿

𝜕𝑎𝑡
=
𝜕ℎ

𝜕𝑎
𝑠𝑡 , 𝑎𝑡 +

𝜕𝑓

𝜕𝑎
𝑠𝑡 , 𝑎𝑡

𝑇

𝜆𝑡+1 = 0

𝜕𝐿

𝜕𝑠𝑡
=
𝜕ℎ

𝜕𝑠
𝑠𝑡 , 𝑎𝑡 +

𝜕𝑓

𝜕𝑠
𝑠𝑡 , 𝑎𝑡

𝑇

𝜆𝑡+1 − 𝜆𝑡 = 0

𝜕𝐿

𝜕𝜆𝑡
= 𝑓 𝑠𝑡 , 𝑎𝑡 − 𝑠𝑡+1 = 0
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Solving Trajectory Optimization Problem

23

minℎ 𝑠𝑇 +

𝑡=0

𝑇−1

ℎ 𝑠𝑡 , 𝑎𝑡

subject to

𝑓 𝑠𝑡, 𝑎𝑡 − 𝑠𝑡+1 = 0 for 0 ≤ 𝑡 < 𝑇

The Lagrange function

𝐿 𝑠, 𝑎, 𝜆 = ℎ 𝑠𝑇 +

𝑡=0

𝑇−1

ℎ 𝑠𝑡 , 𝑎𝑡 + 𝜆𝑡+1
𝑇 𝑓 𝑠𝑡 , 𝑎𝑡 − 𝑠𝑡+1

𝜕𝐿

𝜕𝑠𝑇
=
𝑑ℎ

𝑑𝑠
𝑠𝑇 − 𝜆𝑇 = 0

𝜕𝐿

𝜕𝑎𝑡
=
𝜕ℎ

𝜕𝑎
𝑠𝑡 , 𝑎𝑡 +

𝜕𝑓

𝜕𝑎
𝑠𝑡 , 𝑎𝑡

𝑇

𝜆𝑡+1 = 0

𝜕𝐿

𝜕𝑠𝑡
=
𝜕ℎ

𝜕𝑠
𝑠𝑡 , 𝑎𝑡 +

𝜕𝑓

𝜕𝑠
𝑠𝑡 , 𝑎𝑡

𝑇

𝜆𝑡+1 − 𝜆𝑡 = 0

𝜕𝐿

𝜕𝜆𝑡
= 𝑓 𝑠𝑡 , 𝑎𝑡 − 𝑠𝑡+1 = 0𝑠𝑡+1 = 𝑓 𝑠𝑡 , 𝑎𝑡
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Solving Trajectory Optimization Problem

24

minℎ 𝑠𝑇 +

𝑡=0

𝑇−1

ℎ 𝑠𝑡 , 𝑎𝑡

subject to

𝑓 𝑠𝑡, 𝑎𝑡 − 𝑠𝑡+1 = 0 for 0 ≤ 𝑡 < 𝑇

The Lagrange function

𝐿 𝑠, 𝑎, 𝜆 = ℎ 𝑠𝑇 +

𝑡=0

𝑇−1

ℎ 𝑠𝑡 , 𝑎𝑡 + 𝜆𝑡+1
𝑇 𝑓 𝑠𝑡 , 𝑎𝑡 − 𝑠𝑡+1

𝜕𝐿

𝜕𝑠𝑇
=
𝑑ℎ

𝑑𝑠
𝑠𝑇 − 𝜆𝑇 = 0

𝜕𝐿

𝜕𝑎𝑡
=
𝜕ℎ

𝜕𝑎
𝑠𝑡 , 𝑎𝑡 +

𝜕𝑓

𝜕𝑎
𝑠𝑡 , 𝑎𝑡

𝑇

𝜆𝑡+1 = 0

𝜕𝐿

𝜕𝑠𝑡
=
𝜕ℎ

𝜕𝑠
𝑠𝑡 , 𝑎𝑡 +

𝜕𝑓

𝜕𝑠
𝑠𝑡 , 𝑎𝑡

𝑇

𝜆𝑡+1 − 𝜆𝑡 = 0

𝜕𝐿

𝜕𝜆𝑡
= 𝑓 𝑠𝑡 , 𝑎𝑡 − 𝑠𝑡+1 = 0

𝜆𝑇 = ℎ𝑠
′ 𝑠𝑇

𝑠𝑡+1 = 𝑓 𝑠𝑡 , 𝑎𝑡
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Solving Trajectory Optimization Problem

25

minℎ 𝑠𝑇 +

𝑡=0

𝑇−1

ℎ 𝑠𝑡 , 𝑎𝑡

subject to

𝑓 𝑠𝑡, 𝑎𝑡 − 𝑠𝑡+1 = 0 for 0 ≤ 𝑡 < 𝑇

The Lagrange function

𝐿 𝑠, 𝑎, 𝜆 = ℎ 𝑠𝑇 +

𝑡=0

𝑇−1

ℎ 𝑠𝑡 , 𝑎𝑡 + 𝜆𝑡+1
𝑇 𝑓 𝑠𝑡 , 𝑎𝑡 − 𝑠𝑡+1

𝜕𝐿

𝜕𝑠𝑇
=
𝑑ℎ

𝑑𝑠
𝑠𝑇 − 𝜆𝑇 = 0

𝜕𝐿

𝜕𝑎𝑡
=
𝜕ℎ

𝜕𝑎
𝑠𝑡 , 𝑎𝑡 +

𝜕𝑓

𝜕𝑎
𝑠𝑡 , 𝑎𝑡

𝑇

𝜆𝑡+1 = 0

𝜕𝐿

𝜕𝑠𝑡
=
𝜕ℎ

𝜕𝑠
𝑠𝑡 , 𝑎𝑡 +

𝜕𝑓

𝜕𝑠
𝑠𝑡 , 𝑎𝑡

𝑇

𝜆𝑡+1 − 𝜆𝑡 = 0

𝜕𝐿

𝜕𝜆𝑡
= 𝑓 𝑠𝑡 , 𝑎𝑡 − 𝑠𝑡+1 = 0

𝜆𝑇 = ℎ𝑠
′ 𝑠𝑇

𝜆𝑡 = ℎ𝑠
′ 𝑠𝑡, 𝑎𝑡 + 𝑓𝑠

′ 𝑠𝑡 , 𝑎𝑡
𝑇
𝜆𝑡+1

𝑠𝑡+1 = 𝑓 𝑠𝑡 , 𝑎𝑡
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Solving Trajectory Optimization Problem

26

minℎ 𝑠𝑇 +

𝑡=0

𝑇−1

ℎ 𝑠𝑡 , 𝑎𝑡

subject to

𝑓 𝑠𝑡, 𝑎𝑡 − 𝑠𝑡+1 = 0 for 0 ≤ 𝑡 < 𝑇

The Lagrange function

𝐿 𝑠, 𝑎, 𝜆 = ℎ 𝑠𝑇 +

𝑡=0

𝑇−1

ℎ 𝑠𝑡 , 𝑎𝑡 + 𝜆𝑡+1
𝑇 𝑓 𝑠𝑡 , 𝑎𝑡 − 𝑠𝑡+1

𝜕𝐿

𝜕𝑠𝑇
=
𝑑ℎ

𝑑𝑠
𝑠𝑇 − 𝜆𝑇 = 0

𝜕𝐿

𝜕𝑎𝑡
=
𝜕ℎ

𝜕𝑎
𝑠𝑡 , 𝑎𝑡 +

𝜕𝑓

𝜕𝑎
𝑠𝑡 , 𝑎𝑡

𝑇

𝜆𝑡+1 = 0

𝜕𝐿

𝜕𝑠𝑡
=
𝜕ℎ

𝜕𝑠
𝑠𝑡 , 𝑎𝑡 +

𝜕𝑓

𝜕𝑠
𝑠𝑡 , 𝑎𝑡

𝑇

𝜆𝑡+1 − 𝜆𝑡 = 0

𝜕𝐿

𝜕𝜆𝑡
= 𝑓 𝑠𝑡 , 𝑎𝑡 − 𝑠𝑡+1 = 0

𝜆𝑇 = ℎ𝑠
′ 𝑠𝑇

𝜆𝑡 = ℎ𝑠
′ 𝑠𝑡, 𝑎𝑡 + 𝑓𝑠

′ 𝑠𝑡 , 𝑎𝑡
𝑇
𝜆𝑡+1

𝑠𝑡+1 = 𝑓 𝑠𝑡 , 𝑎𝑡

𝜆 i  al    all d “    a  ”
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Solving Trajectory Optimization Problem

27

minℎ 𝑠𝑇 +

𝑡=0

𝑇−1

ℎ 𝑠𝑡 , 𝑎𝑡

subject to

𝑓 𝑠𝑡, 𝑎𝑡 − 𝑠𝑡+1 = 0 for 0 ≤ 𝑡 < 𝑇

The Lagrange function

𝐿 𝑠, 𝑎, 𝜆 = ℎ 𝑠𝑇 +

𝑡=0

𝑇−1

ℎ 𝑠𝑡 , 𝑎𝑡 + 𝜆𝑡+1
𝑇 𝑓 𝑠𝑡 , 𝑎𝑡 − 𝑠𝑡+1

𝜕𝐿

𝜕𝑠𝑇
=
𝑑ℎ

𝑑𝑠
𝑠𝑇 − 𝜆𝑇 = 0

𝜕𝐿

𝜕𝑎𝑡
=
𝜕ℎ

𝜕𝑎
𝑠𝑡 , 𝑎𝑡 +

𝜕𝑓

𝜕𝑎
𝑠𝑡 , 𝑎𝑡

𝑇

𝜆𝑡+1 = 0

𝜕𝐿

𝜕𝑠𝑡
=
𝜕ℎ

𝜕𝑠
𝑠𝑡 , 𝑎𝑡 +

𝜕𝑓

𝜕𝑠
𝑠𝑡 , 𝑎𝑡

𝑇

𝜆𝑡+1 − 𝜆𝑡 = 0

𝜕𝐿

𝜕𝜆𝑡
= 𝑓 𝑠𝑡 , 𝑎𝑡 − 𝑠𝑡+1 = 0

𝜆𝑇 = ℎ𝑠
′ 𝑠𝑇

𝑎𝑡 = argmin
𝑎

ℎ𝑎
′ 𝑠𝑡 , 𝑎𝑡 + 𝑓𝑎

′ 𝑠𝑡 , 𝑎𝑡
𝑇
𝜆𝑡+1

𝜆𝑡 = ℎ𝑠
′ 𝑠𝑡, 𝑎𝑡 + 𝑓𝑠

′ 𝑠𝑡 , 𝑎𝑡
𝑇
𝜆𝑡+1

𝑠𝑡+1 = 𝑓 𝑠𝑡 , 𝑎𝑡

𝜆 i  al    all d “    a  ”



GAMES 105 - Fundamentals of Character AnimationLibin Liu - SIST, Peking University

Pontryagin’s Maximum Principle for discrete systems

28

minℎ 𝑠𝑇 +

𝑡=0

𝑇−1

ℎ 𝑠𝑡 , 𝑎𝑡

subject to

𝑓 𝑠𝑡, 𝑎𝑡 − 𝑠𝑡+1 = 0 for 0 ≤ 𝑡 < 𝑇

𝜆𝑇 = ℎ𝑠
′ 𝑠𝑇

𝑎𝑡 = argmin
𝑎

ℎ𝑎
′ 𝑠𝑡 , 𝑎𝑡 + 𝑓𝑎

′ 𝑠𝑡 , 𝑎𝑡
𝑇
𝜆𝑡+1

𝜆𝑡 = ℎ𝑠
′ 𝑠𝑡, 𝑎𝑡 + 𝑓𝑠

′ 𝑠𝑡 , 𝑎𝑡
𝑇
𝜆𝑡+1

𝑠𝑡+1 = 𝑓 𝑠𝑡 , 𝑎𝑡

Lev Semyonovich Pontryagin

𝜆 i  al    all d “    a  ”
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Pontryagin’s Maximum Principle for discrete systems

29

minℎ 𝑠𝑇 +

𝑡=0

𝑇−1

ℎ 𝑠𝑡 , 𝑎𝑡

subject to

𝑓 𝑠𝑡, 𝑎𝑡 − 𝑠𝑡+1 = 0 for 0 ≤ 𝑡 < 𝑇

𝜆𝑇 = ℎ𝑠
′ 𝑠𝑇

𝑎𝑡 = argmin
𝑎

ℎ𝑎
′ 𝑠𝑡 , 𝑎𝑡 + 𝑓𝑎

′ 𝑠𝑡 , 𝑎𝑡
𝑇
𝜆𝑡+1

𝜆𝑡 = ℎ𝑠
′ 𝑠𝑡, 𝑎𝑡 + 𝑓𝑠

′ 𝑠𝑡 , 𝑎𝑡
𝑇
𝜆𝑡+1

𝑠𝑡+1 = 𝑓 𝑠𝑡 , 𝑎𝑡

Lev Semyonovich Pontryagin“    a  ” dyna i  
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Pontryagin’s Maximum Principle for discrete systems

30

minℎ 𝑠𝑇 +

𝑡=0

𝑇−1

ℎ 𝑠𝑡 , 𝑎𝑡

subject to

𝑓 𝑠𝑡, 𝑎𝑡 − 𝑠𝑡+1 = 0 for 0 ≤ 𝑡 < 𝑇

𝑠0

𝑠𝑇

𝑎0
𝑎1

𝑎2

𝑎3

Shooting method:

Given initial control 𝑎𝑡 , iteratively update them by

• Forward pass: compute 𝑠𝑡 using

𝑠𝑡+1 = 𝑓 𝑠𝑡 , 𝑎𝑡 , 𝑡 = 0, … , 𝑇 −  

• Backward pass: compute {𝜆𝑡} using

𝜆𝑇 = ℎ𝑠
′ 𝑠𝑇

𝜆𝑡 = ℎ𝑠
′ 𝑠𝑡 , 𝑎𝑡 + 𝑓𝑠

′ 𝑠𝑡 , 𝑎𝑡
𝑇
𝜆𝑡+1, 𝑡 = 𝑇 −  ,… , 0

• Update 𝑎𝑡 using gradient descent

𝜆𝑇 = ℎ𝑠
′ 𝑠𝑇

𝑎𝑡 = argmin
𝑎

ℎ𝑎
′ 𝑠𝑡 , 𝑎𝑡 + 𝑓𝑎

′ 𝑠𝑡 , 𝑎𝑡
𝑇
𝜆𝑡+1

𝜆𝑡 = ℎ𝑠
′ 𝑠𝑡, 𝑎𝑡 + 𝑓𝑠

′ 𝑠𝑡 , 𝑎𝑡
𝑇
𝜆𝑡+1

𝑠𝑡+1 = 𝑓 𝑠𝑡 , 𝑎𝑡

“    a  ” dyna i  
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Optimal Control

31

Open-loop Control:

given a start state 𝑠0, compute sequence of 
actions 𝑎𝑡 to reach the goal

𝑠0

𝑠𝑇

𝑎0
𝑎1

𝑎2

𝑎3

minℎ 𝑠𝑇 +

𝑡=0

𝑇−1

ℎ 𝑠𝑡 , 𝑎𝑡

subject to 𝑓 𝑠𝑡 , 𝑎𝑡 − 𝑠𝑡+1 = 0 for 0 ≤ 𝑡 < 𝑇

Trajectory
Optimization

P n  yagin’ 
Maximum Principle
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Optimal Control

32

Open-loop Control:

given a start state 𝑠0, compute sequence of 
actions 𝑎𝑡 to reach the goal

𝑠0

𝑠𝑇

𝑎0
𝑎1

𝑎2

𝑎3

minℎ 𝑠𝑇 +

𝑡=0

𝑇−1

ℎ 𝑠𝑡 , 𝑎𝑡

subject to 𝑓 𝑠𝑡 , 𝑎𝑡 − 𝑠𝑡+1 = 0 for 0 ≤ 𝑡 < 𝑇

Trajectory
Optimization

P n  yagin’ 
Maximum Principle

Shooting method directly applies PMP. However, it 
does not scale well to complicated problems such 
a     i n   n   l…

Need to be combined with collocation method, 
multiple shooting, etc. for those problems.

Or use derivative-free approaches.
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Optimal Control

33

Open-loop Control: Feedback Control:

given a start state 𝑠0, compute sequence of 
actions 𝑎𝑡 to reach the goal

for any state 𝑠𝑡 at time 𝑡, find the corresponding 
action 𝑎𝑡 = 𝜋 𝑠𝑡 , 𝑡 that eventually reach the goal

𝑠0

𝑠𝑇

𝑎0
𝑎1

𝑎2

𝑎3
𝑠𝑇

minℎ 𝑠𝑇 +

𝑡=0

𝑇−1

ℎ 𝑠𝑡 , 𝑎𝑡

subject to 𝑓 𝑠𝑡 , 𝑎𝑡 − 𝑠𝑡+1 = 0 for 0 ≤ 𝑡 < 𝑇

Trajectory
Optimization

Dynamic
ProgrammingP n  yagin’ 

Maximum Principle
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Dynamic Programming

34

start

goal

5

6

5

76

30
15

11

5

10

3

11

2

2

1

Find a path 𝑠𝑡 that minimizes 

𝐽 𝑠0 =

𝑡=0

ℎ 𝑠𝑡 , 𝑠𝑡+1

𝑠𝑡

𝑠𝑡+1

𝑠0
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Dynamic Programming

35

start

goal

5

6

5

76

30
15

11

5

10

3

11

2

2

1

Find a sequence of action 𝑎𝑡 that minimizes 

𝐽 𝑠0 =

𝑡=0

ℎ 𝑠𝑡 , 𝑎𝑡

𝑠𝑡

𝑠𝑡+1

𝑠0

𝑎𝑡
1 𝑎𝑡

2

𝑎𝑡
3

subject to

𝑠𝑡+1 = 𝑓(𝑠𝑡 , 𝑎𝑡)
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Dynamic Programming

36

start

goal

5

6

5

76

30
15

11

5

10

3

11

2

2

1

Find a policy 𝑎𝑡 = 𝜋 𝑠𝑡 , 𝑡 that minimizes 

𝐽 𝑠0 =

𝑡=0

ℎ 𝑠𝑡 , 𝑎𝑡

𝑠𝑡

𝑠𝑡+1

𝑠0

𝑎𝑡
1 𝑎𝑡

2

𝑎𝑡
3

subject to

𝑠𝑡+1 = 𝑓(𝑠𝑡 , 𝑎𝑡)



GAMES 105 - Fundamentals of Character AnimationLibin Liu - SIST, Peking University

Dynamic Programming

37

start

goal

5

6

5

76

30
15

11

5

10

3

11

2

2

1

Find a policy 𝑎𝑡 = 𝜋 𝑠𝑡 that minimizes 

𝐽 𝑠0 =

𝑡=0

ℎ 𝑠𝑡 , 𝑎𝑡

𝑠𝑡

𝑠𝑡+1

𝑠0

𝑎𝑡
1 𝑎𝑡

2

𝑎𝑡
3

subject to

𝑠𝑡+1 = 𝑓(𝑠𝑡 , 𝑎𝑡)
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Bellman’s Principle of Optimality

38

Richard E. Bellman

An optimal policy has the property that whatever the initial 
state and initial decision are, the remaining decisions must 
constitute an optimal policy with regard to the state resulting 
from the first decision.

𝑠0

𝑎0
1

𝑎0
2

𝑎0
3

goal

𝜋 𝑠𝑡
𝑠0
1

𝑠0
2

𝑠0
3
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Bellman’s Principle of Optimality

39

Richard E. Bellman

An optimal policy has the property that whatever the initial 
state and initial decision are, the remaining decisions must 
constitute an optimal policy with regard to the state resulting 
from the first decision.

* The problem is said to have optimal substructure 

𝑠0

𝑎0
1

𝑎0
2

𝑎0
3

goal

𝜋 𝑠𝑡
𝑠0
1

𝑠0
2

𝑠0
3
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Bellman’s Principle of Optimality

40

Richard E. Bellman
Value of a state 𝑉 𝑠 : 

𝑠0

𝑎0
1

𝑎0
2

𝑎0
3

goal

𝑠0
1

𝑠0
2

𝑠0
3

• the minimal total cost for finishing the task starting from 𝑠

• the total cost for finishing the task starting from 𝑠 using the optimal policy



𝑉 𝑠1
𝜋 𝑠𝑡
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Bellman’s Principle of Optimality

41

Richard E. Bellman
Value of a state 𝑉 𝑠 : 

𝑠0

 

  

  

goal

 0

  

  

• the minimal total cost for finishing the task starting from 𝑠

• the total cost for finishing the task starting from 𝑠 using the optimal policy



𝑉 𝑠1
𝜋 𝑠𝑡
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Bellman’s Principle of Optimality

42

Richard E. Bellman
Value of a state 𝑉 𝑠 : 

𝑠0

 

  

  

goal

 0

  

  

• the minimal total cost for finishing the task starting from 𝑠

• the total cost for finishing the task starting from 𝑠 using the optimal policy



𝑉 𝑠1
𝜋 𝑠𝑡
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The Bellman Equation

43

start

goal

5

6

5

76

30
15

11

5

10

3

11

2

2

1

𝑉 𝑠 = min
𝜋



𝑡=0

ℎ 𝑠𝑡 , 𝑎𝑡 ቚ
𝑠0=𝑠

𝑠𝑡

𝑠𝑡+1

𝑠0

𝑎𝑡
1 𝑎𝑡

2

𝑎𝑡
3

The value function is then
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The Bellman Equation

44

start

goal

5

6

5

76

30
15

11

5

10

3

11

2

2

1

𝑉 𝑠 = min
𝜋



𝑡=0

ℎ 𝑠𝑡 , 𝑎𝑡 ቚ
𝑠0=𝑠

𝑠𝑡

𝑠𝑡+1

𝑠0

𝑎𝑡
1 𝑎𝑡

2

𝑎𝑡
3

The value function is then

𝑉 𝑠0 = min
𝜋



𝑡=0

ℎ 𝑠𝑡, 𝑎𝑡

= min
𝑎0

ℎ 𝑠0, 𝑎0 +min
𝜋



𝑡=1

ℎ 𝑠𝑡, 𝑎𝑡
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The Bellman Equation

45

start

goal

5

6

5

76

30
15

11

5

10

3

11

2

2

1

𝑉 𝑠 = min
𝜋



𝑡=0

ℎ 𝑠𝑡 , 𝑎𝑡 ቚ
𝑠0=𝑠

𝑠𝑡

𝑠𝑡+1

𝑠0

𝑎𝑡
1 𝑎𝑡

2

𝑎𝑡
3

The value function is then

𝑉 𝑠0 = min
𝜋



𝑡=0

ℎ 𝑠𝑡, 𝑎𝑡

= min
𝑎0

ℎ 𝑠0, 𝑎0 +min
𝜋



𝑡=1

ℎ 𝑠𝑡, 𝑎𝑡
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The Bellman Equation

46

start

goal

5

6

5

76

30
15

11

5

10

3

11

2

2

1

𝑉 𝑠 = min
𝜋



𝑡=0

ℎ 𝑠𝑡 , 𝑎𝑡 ቚ
𝑠0=𝑠

𝑠𝑡

𝑠𝑡+1

𝑠0

𝑎𝑡
1 𝑎𝑡

2

𝑎𝑡
3

The value function is then

𝑉 𝑠0 = min
𝜋



𝑡=0

ℎ 𝑠𝑡, 𝑎𝑡

= min
𝑎0

ℎ 𝑠0, 𝑎0 + 𝑉 𝑠1 = 𝑓 𝑠0, 𝑎0
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The Bellman Equation

47

𝑉 𝑠 = min
𝑎

ℎ 𝑠, 𝑎 + 𝑉 𝑓 𝑠, 𝑎

Mathematically, an optimal value function 𝑉 𝑠 can be defined recursively as:
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The Bellman Equation

48

𝑉 𝑠 = min
𝑎

ℎ 𝑠, 𝑎 + 𝑉 𝑓 𝑠, 𝑎

Mathematically, an optimal value function 𝑉 𝑠 can be defined recursively as:

If we know this value function, the optimal policy can be computed as

𝜋 𝑠 = argmin
𝑎

ℎ 𝑠, 𝑎 + 𝑉 𝑓 𝑠, 𝑎
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The Bellman Equation

49

𝑉 𝑠 = min
𝑎

ℎ 𝑠, 𝑎 + 𝑉 𝑓 𝑠, 𝑎

Mathematically, an optimal value function 𝑉 𝑠 can be defined recursively as:

If we know this value function, the optimal policy can be computed as

𝜋 𝑠 = argmin
𝑎

ℎ 𝑠, 𝑎 + 𝑉 𝑓 𝑠, 𝑎

Or,

𝜋 𝑠 = argmin
𝑎

𝑄 𝑠, 𝑎

𝑄 𝑠, 𝑎 = ℎ 𝑠, 𝑎 + 𝑉 𝑓 𝑠, 𝑎where
Q-function
State-action value function
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The Bellman Equation

50

𝑉 𝑠 = min
𝑎

ℎ 𝑠, 𝑎 + 𝑉 𝑓 𝑠, 𝑎

Mathematically, an optimal value function 𝑉 𝑠 can be defined recursively as:

If we know this value function, the optimal policy can be computed as

𝜋 𝑠 = argmin
𝑎

ℎ 𝑠, 𝑎 + 𝑉 𝑓 𝑠, 𝑎

Or,

𝜋 𝑠 = argmin
𝑎

𝑄 𝑠, 𝑎

𝑄 𝑠, 𝑎 = ℎ 𝑠, 𝑎 + 𝑉 𝑓 𝑠, 𝑎where
Q-function
State-action value function

This arg max can be easily 
computed for discrete control 
problems.

But there are not always 
closed-forms solution for 
continuous control problems.

Learning 𝑉 𝑠 and/or 𝑄 𝑠, 𝑎 is 
the core of optimal control / 
reinforcement learning methods
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Open-loop Control: Feedback Control:

given a start state 𝑠0, compute sequence of 
actions 𝑎𝑡 to reach the goal

for any state 𝑠𝑡 at time 𝑡, find the corresponding 
action 𝑎𝑡 = 𝜋 𝑠𝑡 , 𝑡 that eventually reach the goal

𝑠0

𝑠𝑇

𝑎0
𝑎1

𝑎2

𝑎3
𝑠𝑇

minℎ 𝑠𝑇 +

𝑡=0

𝑇−1

ℎ 𝑠𝑡 , 𝑎𝑡

subject to 𝑓 𝑠𝑡 , 𝑎𝑡 − 𝑠𝑡+1 = 0 for 0 ≤ 𝑡 < 𝑇

Trajectory
Optimization

Dynamic
Programming

P n  yagin’ 
Maximum Principle

B ll an’  P in ipl  
of Optimality
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• LQR is a special class of optimal control problems with
• Linear dynamic function

• Quadratic objective function
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minℎ 𝑠𝑇 +

𝑡=0

𝑇−1

ℎ 𝑠𝑡 , 𝑎𝑡

subject to

𝑓 𝑠𝑡 , 𝑎𝑡 − 𝑠𝑡+1 = 0

for 0 ≤ 𝑡 < 𝑇

objective function

dynamic function
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𝑔

𝑥, 𝑣

target 
height

𝑓

ҧ𝑥

Compute a target trajectory ҧ𝑥 𝑡
such that the simulated trajectory 𝑥 𝑡
is a sine curve.

𝑡

𝑥 ҧ𝑥 𝑡 = ?

𝑓 = 𝑘𝑝 ҧ𝑥 − 𝑥 − 𝑘𝑑𝑣

𝑥 𝑡 = sin 𝑡

min
𝑥𝑛,𝑣𝑛, ҧ𝑥𝑛



𝑛=0

𝑁

sin 𝑡𝑛 − 𝑥𝑛
2 + 

𝑛=0

𝑁

ҧ𝑥𝑛
2

𝑠. 𝑡. 𝑣𝑛+1 = 𝑣𝑛 + ℎ 𝑘𝑝 ҧ𝑥𝑛 − 𝑥𝑛 − 𝑘𝑑𝑣𝑛

𝑥𝑛+1 = 𝑥𝑛 + ℎ𝑣𝑛+1
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• LQR is a special class of optimal control problems with
• Linear dynamic function

• Quadratic objective function
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𝑔

𝑥, 𝑣

target 
height 𝑓

ҧ𝑥

𝑓 = 𝑘𝑝 ҧ𝑥 − 𝑥 − 𝑘𝑑𝑣

𝑣𝑛+1 = 𝑣𝑛 + ℎ 𝑘𝑝 ҧ𝑥𝑛 − 𝑥𝑛 − 𝑘𝑑𝑣𝑛

𝑥𝑛+1 = 𝑥𝑛 + ℎ𝑣𝑛+1

min 𝑠𝑇
𝑇𝑄𝑇𝑠𝑇 +

𝑡=0

𝑇

𝑠𝑡
𝑇𝑄𝑡𝑠𝑡 + 𝑎𝑡

𝑇𝑅𝑡𝑎𝑡

subject to

𝑠𝑡+1 = 𝐴𝑡𝑠𝑡 + 𝐵𝑡𝑎𝑡 for 0 ≤ 𝑡 < 𝑇

objective function

dynamic function
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𝑉 𝑠 = min
𝑎

ℎ 𝑠, 𝑎 + 𝑉 𝑓 𝑠, 𝑎

𝑄 𝑠, 𝑎 = ℎ 𝑠, 𝑎 + 𝑉 𝑓 𝑠, 𝑎

The Bellman Equations:

𝑉 𝑠 = min
𝑎

𝑄 𝑠, 𝑎

Or,

𝑠0

𝑎0
1

𝑎0
2

𝑎0
3

goal

𝑠0
1

𝑠0
2

𝑠0
3

𝑉 𝑠1
𝜋 𝑠𝑡

min 𝑠𝑇
𝑇𝑄𝑇𝑠𝑇 +

𝑡=0

𝑇

𝑠𝑡
𝑇𝑄𝑡𝑠𝑡 + 𝑎𝑡

𝑇𝑅𝑡𝑎𝑡

subject to

𝑠𝑡+1 = 𝐴𝑡𝑠𝑡 + 𝐵𝑡𝑎𝑡 for 0 ≤ 𝑡 < 𝑇
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𝑉 𝑠𝑇 = min
𝑎𝑇

𝑠𝑇
𝑇𝑄𝑇𝑠𝑇 = 𝑠𝑇

𝑇𝑄𝑇𝑠𝑇

Solve for the last step:

𝑠0

𝑎0
1

𝑎0
2

𝑎0
3

goal

𝑠0
1

𝑠0
2

𝑠0
3

𝑉 𝑠1
𝜋 𝑠𝑡

min 𝑠𝑇
𝑇𝑄𝑇𝑠𝑇 +

𝑡=0

𝑇

𝑠𝑡
𝑇𝑄𝑡𝑠𝑡 + 𝑎𝑡

𝑇𝑅𝑡𝑎𝑡

subject to

𝑠𝑡+1 = 𝐴𝑡𝑠𝑡 + 𝐵𝑡𝑎𝑡 for 0 ≤ 𝑡 < 𝑇
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𝑉 𝑠𝑇 = min
𝑎𝑇

𝑠𝑇
𝑇𝑄𝑇𝑠𝑇 = 𝑠𝑇

𝑇𝑄𝑇𝑠𝑇

Solve for the last step:

Solve for step 𝑇 −  :

𝑄 𝑠𝑇−1, 𝑎𝑇−1 = 𝑠𝑇−1
𝑇 𝑄𝑇−1𝑠𝑇−1 + 𝑎𝑇−1

𝑇 𝑅𝑇−1𝑎𝑇−1 + 𝑉 𝑠𝑇

bellman equation

= 𝑠𝑇−1
𝑇 𝑄𝑇−1𝑠𝑇−1 + 𝑎𝑇−1

𝑇 𝑅𝑇−1𝑎𝑇−1 + 𝑠𝑇
𝑇𝑄𝑇𝑠𝑇

𝑠0

𝑎0
1

𝑎0
2

𝑎0
3

goal

𝑠0
1

𝑠0
2

𝑠0
3

𝑉 𝑠1
𝜋 𝑠𝑡

min 𝑠𝑇
𝑇𝑄𝑇𝑠𝑇 +

𝑡=0

𝑇

𝑠𝑡
𝑇𝑄𝑡𝑠𝑡 + 𝑎𝑡

𝑇𝑅𝑡𝑎𝑡

subject to

𝑠𝑡+1 = 𝐴𝑡𝑠𝑡 + 𝐵𝑡𝑎𝑡 for 0 ≤ 𝑡 < 𝑇
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𝑠0

𝑎0
1

𝑎0
2

𝑎0
3

goal

𝑠0
1

𝑠0
2

𝑠0
3

𝑉 𝑠1
𝜋 𝑠𝑡

𝑉 𝑠𝑇 = min
𝑎𝑇

𝑠𝑇
𝑇𝑄𝑇𝑠𝑇 = 𝑠𝑇

𝑇𝑄𝑇𝑠𝑇

Solve for the last step:

Solve for step 𝑇 −  :

𝑄 𝑠𝑇−1, 𝑎𝑇−1 = 𝑠𝑇−1
𝑇 𝑄𝑇−1𝑠𝑇−1 + 𝑎𝑇−1

𝑇 𝑅𝑇−1𝑎𝑇−1 + 𝑉 𝑠𝑇

bellman equation

= 𝑠𝑇−1
𝑇 𝑄𝑇−1𝑠𝑇−1 + 𝑎𝑇−1

𝑇 𝑅𝑇−1𝑎𝑇−1 + 𝑠𝑇
𝑇𝑄𝑇𝑠𝑇

= 𝑠𝑇−1
𝑇 𝑄𝑇−1𝑠𝑇−1 + 𝑎𝑇−1

𝑇 𝑅𝑇−1𝑎𝑇−1

+ 𝐴𝑇−1𝑠𝑇−1 + 𝐵𝑇−1𝑎𝑇−1 𝑇
𝑇𝑄𝑇 𝐴𝑇−1𝑠𝑇−1 + 𝐵𝑇−1𝑎𝑇−1

apply dynamic function min 𝑠𝑇
𝑇𝑄𝑇𝑠𝑇 +

𝑡=0

𝑇

𝑠𝑡
𝑇𝑄𝑡𝑠𝑡 + 𝑎𝑡

𝑇𝑅𝑡𝑎𝑡

subject to

𝑠𝑡+1 = 𝐴𝑡𝑠𝑡 + 𝐵𝑡𝑎𝑡 for 0 ≤ 𝑡 < 𝑇
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𝑠0

𝑎0
1

𝑎0
2

𝑎0
3

goal

𝑠0
1

𝑠0
2

𝑠0
3

𝑉 𝑠1
𝜋 𝑠𝑡

𝑉 𝑠𝑇 = min
𝑎𝑇

𝑠𝑇
𝑇𝑄𝑇𝑠𝑇 = 𝑠𝑇

𝑇𝑄𝑇𝑠𝑇

Solve for the last step:

Solve for step 𝑇 −  :

𝑄 𝑠𝑇−1, 𝑎𝑇−1 = 𝑠𝑇−1
𝑇 𝑄𝑇−1 + 𝐴𝑇−1

𝑇 𝑄𝑇𝐴𝑇−1 𝑠𝑇−1

+ 𝑎𝑇−1
𝑇 𝑅𝑇−1 + 𝐵𝑇−1

𝑇 𝑄𝑇𝐵𝑇−1 𝑎𝑇−1

+  𝑠𝑇−1
𝑇 𝐴𝑇−1

𝑇 𝑄𝑇𝐵𝑇−1𝑎𝑇−1
min 𝑠𝑇

𝑇𝑄𝑇𝑠𝑇 +

𝑡=0

𝑇

𝑠𝑡
𝑇𝑄𝑡𝑠𝑡 + 𝑎𝑡

𝑇𝑅𝑡𝑎𝑡

subject to

𝑠𝑡+1 = 𝐴𝑡𝑠𝑡 + 𝐵𝑡𝑎𝑡 for 0 ≤ 𝑡 < 𝑇
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𝑠0

𝑎0
1

𝑎0
2

𝑎0
3

goal

𝑠0
1

𝑠0
2

𝑠0
3

𝑉 𝑠1
𝜋 𝑠𝑡

𝑉 𝑠𝑇 = min
𝑎𝑇

𝑠𝑇
𝑇𝑄𝑇𝑠𝑇 = 𝑠𝑇

𝑇𝑄𝑇𝑠𝑇

Solve for the last step:

Solve for step 𝑇 −  :

𝑄 𝑠𝑇−1, 𝑎𝑇−1

min 𝑠𝑇
𝑇𝑄𝑇𝑠𝑇 +

𝑡=0

𝑇

𝑠𝑡
𝑇𝑄𝑡𝑠𝑡 + 𝑎𝑡

𝑇𝑅𝑡𝑎𝑡

subject to

𝑠𝑡+1 = 𝐴𝑡𝑠𝑡 + 𝐵𝑡𝑎𝑡 for 0 ≤ 𝑡 < 𝑇

𝑎𝑇−1
∗ = argmin

𝑎𝑇−1
𝑄 𝑠𝑇−1, 𝑎𝑇−1

= − 𝑅𝑇−1 + 𝐵𝑇−1
𝑇 𝑄𝑇𝐵𝑇−1

−1
𝐵𝑇−1
𝑇 𝑄𝑇𝐴𝑇−1𝑠𝑇−1

= 𝑠𝑇−1
𝑇 𝑄𝑇−1 + 𝐴𝑇−1

𝑇 𝑄𝑇𝐴𝑇−1 𝑠𝑇−1

+ 𝑎𝑇−1
𝑇 𝑅𝑇−1 + 𝐵𝑇−1

𝑇 𝑄𝑇𝐵𝑇−1 𝑎𝑇−1

+  𝑠𝑇−1
𝑇 𝐴𝑇−1

𝑇 𝑄𝑇𝐵𝑇−1𝑎𝑇−1
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𝑠0

𝑎0
1

𝑎0
2

𝑎0
3

goal

𝑠0
1

𝑠0
2

𝑠0
3

𝑉 𝑠1
𝜋 𝑠𝑡

𝑉 𝑠𝑇 = min
𝑎𝑇

𝑠𝑇
𝑇𝑄𝑇𝑠𝑇 = 𝑠𝑇

𝑇𝑄𝑇𝑠𝑇

Solve for the last step:

Solve for step 𝑇 −  :

𝑄 𝑠𝑇−1, 𝑎𝑇−1

min 𝑠𝑇
𝑇𝑄𝑇𝑠𝑇 +

𝑡=0

𝑇

𝑠𝑡
𝑇𝑄𝑡𝑠𝑡 + 𝑎𝑡

𝑇𝑅𝑡𝑎𝑡

subject to

𝑠𝑡+1 = 𝐴𝑡𝑠𝑡 + 𝐵𝑡𝑎𝑡 for 0 ≤ 𝑡 < 𝑇

𝑎𝑇−1
∗ = argmin

𝑎𝑇−1
𝑄 𝑠𝑇−1, 𝑎𝑇−1

= −𝐾𝑇−1𝑠𝑇−1

= 𝑠𝑇−1
𝑇 𝑄𝑇−1 + 𝐴𝑇−1

𝑇 𝑄𝑇𝐴𝑇−1 𝑠𝑇−1

+ 𝑎𝑇−1
𝑇 𝑅𝑇−1 + 𝐵𝑇−1

𝑇 𝑄𝑇𝐵𝑇−1 𝑎𝑇−1

+  𝑠𝑇−1
𝑇 𝐴𝑇−1

𝑇 𝑄𝑇𝐵𝑇−1𝑎𝑇−1

𝐾𝑇−1 = 𝑅𝑇−1 + 𝐵𝑇−1
𝑇 𝑄𝑇𝐵𝑇−1

−1
𝐵𝑇−1
𝑇 𝑄𝑇𝐴𝑇−1

Linear feedback policy!
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𝑠0

𝑎0
1

𝑎0
2

𝑎0
3

goal

𝑠0
1

𝑠0
2

𝑠0
3

𝑉 𝑠1
𝜋 𝑠𝑡

𝑉 𝑠𝑇 = min
𝑎𝑇

𝑠𝑇
𝑇𝑄𝑇𝑠𝑇 = 𝑠𝑇

𝑇𝑄𝑇𝑠𝑇

Solve for the last step:

Solve for step 𝑇 −  :

𝑄 𝑠𝑇−1, 𝑎𝑇−1

min 𝑠𝑇
𝑇𝑄𝑇𝑠𝑇 +

𝑡=0

𝑇

𝑠𝑡
𝑇𝑄𝑡𝑠𝑡 + 𝑎𝑡

𝑇𝑅𝑡𝑎𝑡

subject to

𝑠𝑡+1 = 𝐴𝑡𝑠𝑡 + 𝐵𝑡𝑎𝑡 for 0 ≤ 𝑡 < 𝑇

𝑉 𝑠𝑇−1 = min
𝑎𝑇−1

𝑄 𝑠𝑇−1, 𝑎𝑇−1

= 𝑠𝑇−1
𝑇 𝑃𝑇−1𝑠𝑇−1 𝑃𝑇−1 = ⋯

Quadratic value function!

= 𝑠𝑇−1
𝑇 𝑄𝑇−1 + 𝐴𝑇−1

𝑇 𝑄𝑇𝐴𝑇−1 𝑠𝑇−1

+ 𝑎𝑇−1
𝑇 𝑅𝑇−1 + 𝐵𝑇−1

𝑇 𝑄𝑇𝐵𝑇−1 𝑎𝑇−1

+  𝑠𝑇−1
𝑇 𝐴𝑇−1

𝑇 𝑄𝑇𝐵𝑇−1𝑎𝑇−1
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𝑠0

𝑎0
1

𝑎0
2

𝑎0
3

goal

𝑠0
1

𝑠0
2

𝑠0
3

𝑉 𝑠1
𝜋 𝑠𝑡

𝑉 𝑠𝑇 = min
𝑎𝑇

𝑠𝑇
𝑇𝑄𝑇𝑠𝑇 = 𝑠𝑇

𝑇𝑄𝑇𝑠𝑇

Solve for the last step:

Solve for step 𝑡, 𝑡 = 𝑇 −  , 𝑇 −  ,… , 0 :

min 𝑠𝑇
𝑇𝑄𝑇𝑠𝑇 +

𝑡=0

𝑇

𝑠𝑡
𝑇𝑄𝑡𝑠𝑡 + 𝑎𝑡

𝑇𝑅𝑡𝑎𝑡

subject to

𝑠𝑡+1 = 𝐴𝑡𝑠𝑡 + 𝐵𝑡𝑎𝑡 for 0 ≤ 𝑡 < 𝑇

𝑉 𝑠𝑡 = 𝑠𝑡
𝑇𝑃𝑡𝑠𝑡

𝑃𝑡 = 𝐹 𝑃𝑡+1 = ⋯

𝑎𝑡
∗ = −𝐾𝑡𝑠𝑡

𝐾𝑡 = 𝑅𝑡 + 𝐵𝑡
𝑇𝑃𝑡+1𝐵𝑡

−1
𝐵𝑡
𝑇𝑃𝑡+1𝐴𝑡

Linear feedback policy!

Quadratic value function!
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• Linear dynamic function

• Quadratic objective function

• Solution of LQR is a linear feedback policy

64

min 𝑠𝑇
𝑇𝑄𝑇𝑠𝑇 +

𝑡=0

𝑇

𝑠𝑡
𝑇𝑄𝑡𝑠𝑡 + 𝑎𝑡

𝑇𝑅𝑡𝑎𝑡

subject to

𝑠𝑡+1 = 𝐴𝑡𝑠𝑡 + 𝐵𝑡𝑎𝑡 for 0 ≤ 𝑡 < 𝑇

𝑎𝑡
∗ = −𝐾𝑡𝑠𝑡

𝐾𝑡 = 𝑅𝑡 + 𝐵𝑡
𝑇𝑃𝑡+1𝐵𝑡

−1
𝐵𝑡
𝑇𝑃𝑡+1𝐴𝑡
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Linear Quadratic Regulator (LQR)

• LQR is a special class of optimal control problems with
• Linear dynamic function

• Quadratic objective function

• How to deal with
• Nonlinear dynamic function?

• Non-quadratic objective function?

65
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Linear Quadratic Regulator (LQR)

• Nonlinear problems

66

min

𝑡=0

𝑇−1

ℎ 𝑠𝑡 , 𝑎𝑡

subject to

𝑓 𝑠𝑡 , 𝑎𝑡 − 𝑠𝑡+1 = 0 for 0 ≤ 𝑡 < 𝑇

objective function

dynamic function
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Linear Quadratic Regulator (LQR)

• Nonlinear problems

67

Approximate cost function as a quadratic function: 

ℎ 𝑠𝑡 , 𝑎𝑡 ≈ ℎ ҧ𝑠𝑡 , ത𝑎𝑡 + ∇ℎ ҧ𝑠𝑡 , ത𝑎𝑡
𝑠𝑡 − ҧ𝑠𝑡
𝑎𝑡 − ത𝑎𝑡

+
 

 

𝑠𝑡 − ҧ𝑠𝑡
𝑎𝑡 − ത𝑎𝑡

𝑇

∇2ℎ ҧ𝑠𝑡 , ത𝑎𝑡
𝑠𝑡 − ҧ𝑠𝑡
𝑎𝑡 − ത𝑎𝑡

min

𝑡=0

𝑇−1

ℎ 𝑠𝑡 , 𝑎𝑡

subject to

𝑓 𝑠𝑡 , 𝑎𝑡 − 𝑠𝑡+1 = 0 for 0 ≤ 𝑡 < 𝑇

objective function

dynamic function
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Linear Quadratic Regulator (LQR)

• Nonlinear problems

68

ℎ 𝑠𝑡 , 𝑎𝑡 ≈ ℎ ҧ𝑠𝑡 , ത𝑎𝑡 + ∇ℎ ҧ𝑠𝑡 , ത𝑎𝑡
𝑠𝑡 − ҧ𝑠𝑡
𝑎𝑡 − ത𝑎𝑡

+
 

 

𝑠𝑡 − ҧ𝑠𝑡
𝑎𝑡 − ത𝑎𝑡

𝑇

∇2ℎ ҧ𝑠𝑡 , ത𝑎𝑡
𝑠𝑡 − ҧ𝑠𝑡
𝑎𝑡 − ത𝑎𝑡

min

𝑡=0

𝑇−1

ℎ 𝑠𝑡 , 𝑎𝑡

subject to

𝑓 𝑠𝑡 , 𝑎𝑡 − 𝑠𝑡+1 = 0 for 0 ≤ 𝑡 < 𝑇

objective function

dynamic function

Approximate dynamic function as a linear function:

Approximate cost function as a quadratic function: 

Or a quadratic function:

𝑓 𝑠𝑡 , 𝑎𝑡 ≈ 𝑓 ҧ𝑠𝑡 , ത𝑎𝑡 + ∇𝑓 ҧ𝑠𝑡, ത𝑎𝑡
𝑠𝑡 − ҧ𝑠𝑡
𝑎𝑡 − ത𝑎𝑡

𝑓 𝑠𝑡 , 𝑎𝑡 ≈ ∗∗∗ +
 

 

𝑠𝑡 − ҧ𝑠𝑡
𝑎𝑡 − ത𝑎𝑡

𝑇

∇2𝑓 ҧ𝑠𝑡, ത𝑎𝑡
𝑠𝑡 − ҧ𝑠𝑡
𝑎𝑡 − ത𝑎𝑡

iLQR: iterative LQR DDP: Differential Dynamic Programming
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Locomotion Using Optimal Control

69

[Muico et al 2011 - Composite Control of 
Physically Simulated Characters]
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Model-based Method vs. Model-free Method

70

min

𝑡=0

𝑇−1

ℎ 𝑠𝑡 , 𝑎𝑡

subject to

𝑠𝑡+1 = 𝑓 𝑠𝑡 , 𝑎𝑡 for 0 ≤ 𝑡 < 𝑇

objective function

dynamic function

What if the dynamic function 𝑓 𝑠, 𝑎 is not know?

What if the system has noise?

What if the dynamic function 𝑓 𝑠, 𝑎 is not accurate?

What if the system is highly nonlinear?
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Sampling-based Policy Optimization

• Iterative methods

71

• Goal: find the optimal policy 𝜋 𝑠; 𝜃 that minimize the objective 𝐽 𝜃 = σ𝑡=0ℎ 𝑠𝑡 , 𝑎𝑡

• Initialize policy parmeters 𝜋 𝑥; 𝜃

• Repeat:

• Propose a set of candidate parameters 𝜃𝑖 according to 𝜃

• Simulate the agent under the control of each 𝜋 𝜃𝑖

• Evaluate the objective function 𝐽 𝜃𝑖 on the simulated state-action sequences

• Update the estimation of 𝜃 based on 𝐽 𝜃𝑖
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Sampling-based Policy Optimization

• Iterative methods

• Example: CMA-ES

72

• Goal: find the optimal policy 𝜋 𝑠; 𝜃 that minimize the objective 𝐽 𝜃 = σ𝑡=0ℎ 𝑠𝑡 , 𝑎𝑡

• Initialize policy parmeters 𝜋 𝑥; 𝜃

• Repeat:

• Propose a set of candidate parameters 𝜃𝑖 according to 𝜃

• Simulate the agent under the control of each 𝜋 𝜃𝑖

• Evaluate the objective function 𝐽 𝜃𝑖 on the simulated state-action sequences

• Update the estimation of 𝜃 based on 𝐽 𝜃𝑖
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Example: Locomotion Controller with Linear Policy

73

[Liu et al. 2012 – Terrain Runner]
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Stage 1a: Open-loop Policy

74/44

𝑎

ǁ𝑠

reference states

reference actions

Find open-loop control using SAMCON
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Stage 1b: Linear Feedback Policy

75/44

𝑠 − ǁ𝑠 = 𝛿𝑠

𝛿𝑎 = 𝑎 − 𝑎

𝛿𝑎 = 𝑀 𝛿𝑠 + ො𝑎
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Stage 1b: Linear Feedback Policy

76/44

𝑠 − ǁ𝑠 = 𝛿𝑠

𝛿𝑎 = 𝑀 𝛿𝑠 + ො𝑎

change in control change in states

𝛿𝑎 = 𝑎 − 𝑎
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Stage 1b: Reduced-order Closed-loop Policy

77/44

𝑠 − ǁ𝑠 = 𝛿𝑠

𝛿𝑎 = 𝑀 𝛿𝑠 + ො𝑎

change in control change in states

𝑀𝑎𝑝 ⋅ 𝑀𝑠𝑝

𝛿𝑎 = 𝑎 − 𝑎
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Stage 1b: Reduced-order Closed-loop Policy

78/44

𝛿𝑠

𝛿𝑎 = 𝑀 𝛿𝑠 + ො𝑎

change in control change in states

𝑀𝑎𝑝 ⋅ 𝑀𝑠𝑝

𝛿𝑎

𝑀𝑠𝑝𝑀𝑎𝑝

reduced-order state
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Manually-selected States: s

• Running: 12 dimensions

79/44

{ , , , }
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Manually-selected Controls: a

80/44

• for all skills: 9 dimensions
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𝛿𝑎 = 𝑀𝛿𝑠 + ො𝑎

Optimization

81/44

• Optimize 𝑀
• CMA, Covariance Matrix Adaption ([Hansen 2006])

• For the running task:
• #optimization variables: 12*9 = 108 / (12*3+3*9) = 63

• 12 minutes on 24 cores
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Example: Locomotion Controller with Linear Policy

82

[Liu et al. 2012 – Terrain Runner]
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Optimal Control  Reinforcement Learning

• RL shares roughly the same overall goal with Optimal Control

83

max

𝑡=0

𝑟 𝑠𝑡 , 𝑎𝑡
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Optimal Control  Reinforcement Learning

• RL shares roughly the same overall goal with Optimal Control

• But RL typically does not assume perfect knowledge of system

84

𝑓 𝑠𝑡 , 𝑎𝑡 − 𝑠𝑡+1 = 0

max

𝑡=0

𝑟 𝑠𝑡 , 𝑎𝑡
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Optimal Control  Reinforcement Learning

• RL shares roughly the same overall goal with Optimal Control

• But RL typically does not assume perfect knowledge of system

• RL can still take advantage of a system model →model-based RL
• The model can be learned from data

85

𝑓 𝑠𝑡 , 𝑎𝑡 − 𝑠𝑡+1 = 0

max

𝑡=0

𝑟 𝑠𝑡 , 𝑎𝑡

𝑠𝑡+1 = 𝑓 𝑠𝑡 , 𝑎𝑡; 𝜃
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Markov Decision Process (MDP)

86

Agent Environment
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Markov Decision Process (MDP)

87

action 𝑎

state 𝑠, reward 𝑟

Agent Environment

Policy

Transition probability 

…𝑠0

𝑎0

𝑠1

𝑎1

𝑠2

𝑠𝑡+1 ∼ 𝑝 ⋅ 𝑠𝑡 , 𝑎𝑡

𝑎𝑡 ∼ 𝜋 ⋅ 𝑠𝑡

State 𝑠𝑡 Action 𝑎𝑡

Reward 𝑟𝑡 = 𝑟 𝑠𝑡 , 𝑎𝑡

Return 𝑅 =

𝑡

𝛾𝑡𝑟 𝑠𝑡 , 𝑎𝑡
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Markov Decision Process (MDP)

88

action 𝑎

state 𝑠

Agent Environment

𝑠0 𝑎0 𝑠1 𝑎1 …𝑠2

.

Trajectory 

𝜏 =

Reward 

𝑟 𝑠𝑡 , 𝑎𝑡 = − +⋯
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Markov Decision Process (MDP)

89

Policy

Transition probability 

𝑠𝑡+1 ∼ 𝑝 ⋅ 𝑠𝑡 , 𝑎𝑡

𝑎𝑡 ∼ 𝜋 ⋅ 𝑠𝑡

State 𝑠𝑡 Action 𝑎𝑡

Reward 𝑟𝑡 = 𝑟 𝑠𝑡 , 𝑎𝑡

Return 𝑅 = 

𝑡

𝛾𝑡𝑟 𝑠𝑡 , 𝑎𝑡

MDP is a discrete-time stochastic control process. 
It provides a mathematical framework for modeling decision making in situations 
where outcomes are partly random and partly under the control of a decision maker.
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Markov Decision Process (MDP)

90

Policy

Transition probability 

𝑠𝑡+1 ∼ 𝑝 ⋅ 𝑠𝑡 , 𝑎𝑡

𝑎𝑡 ∼ 𝜋 ⋅ 𝑠𝑡

State 𝑠𝑡 ∈ 𝑆 Action 𝑎𝑡 ∈ 𝐴

Reward 𝑟𝑡 = 𝑟 𝑠𝑡 , 𝑎𝑡

Return 𝑅 = 

𝑡

𝛾𝑡𝑟 𝑠𝑡 , 𝑎𝑡

MDP is a discrete-time stochastic control process. 
It provides a mathematical framework for modeling decision making in situations 
where outcomes are partly random and partly under the control of a decision maker.

A MDP problem:

ℳ = {𝑆, 𝐴, 𝑝, 𝑟}

𝑆: state space

𝐴: action space
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Markov Decision Process (MDP)

91

Policy

Transition probability 

𝑠𝑡+1 ∼ 𝑝 ⋅ 𝑠𝑡 , 𝑎𝑡

𝑎𝑡 ∼ 𝜋 ⋅ 𝑠𝑡

State 𝑠𝑡 ∈ 𝑆 Action 𝑎𝑡 ∈ 𝐴

Reward 𝑟𝑡 = 𝑟 𝑠𝑡 , 𝑎𝑡

Return 𝑅 = 

𝑡

𝛾𝑡𝑟 𝑠𝑡 , 𝑎𝑡

MDP is a discrete-time stochastic control process. 
It provides a mathematical framework for modeling decision making in situations 
where outcomes are partly random and partly under the control of a decision maker.

A MDP problem:

ℳ = {𝑆, 𝐴, 𝑝, 𝑟}

Solve for a policy 𝜋 𝑎 𝑠 that optimize 
the expected return

𝐽 = 𝐸 𝑅 = 𝐸𝜏∼𝜋 

𝑡

𝛾𝑡𝑟 𝑠𝑡 , 𝑎𝑡

Overall all trajectories 𝜏 = 𝑠0, 𝑎0, 𝑠1, 𝑎1, …
induced by 𝜋
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Bellman Equations

92

𝑉 𝑠 = min
𝑎

ℎ 𝑠, 𝑎 + 𝑉 𝑓 𝑠, 𝑎

In optimal control: 

𝜋 𝑠 = argmin
𝑎

ℎ 𝑠, 𝑎 + 𝑉 𝑓 𝑠, 𝑎

𝑄 𝑠, 𝑎 = ℎ 𝑠, 𝑎 + 𝑉 𝑓 𝑠, 𝑎

Value function:

Optimal policy:

Optimal Q-function / 
state-action value function:
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Bellman Equations

93

In optimal control: 

In RL control: 

𝑉𝜋 𝑠 = 𝐸𝜏∼𝜋 𝑟 𝑠, 𝑎 + 𝑉 𝑠′Value function for a policy 𝜋: This is not necessarily optimal

Q-function for a policy 𝜋: 𝑄𝜋 𝑠, 𝑎 = 𝑟 𝑠, 𝑎 + 𝐸𝜏∼𝜋 𝑉 𝑠′

𝑉 𝑠 = min
𝑎

ℎ 𝑠, 𝑎 + 𝑉 𝑓 𝑠, 𝑎

𝜋 𝑠 = argmin
𝑎

ℎ 𝑠, 𝑎 + 𝑉 𝑓 𝑠, 𝑎

𝑄 𝑠, 𝑎 = ℎ 𝑠, 𝑎 + 𝑉 𝑓 𝑠, 𝑎

Value function:

Optimal policy:

Optimal Q-function / 
state-action value function:
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How to Solve MDP

• Value-based Methods
• Learning the value function/Q-function using the Bellman equations

• Evaluation the policy as 

• Typically used for discrete problems

• Example: Value iteration, Q-l a ning, DQN, …

94

𝜋 𝑠 = argmin
𝑎

𝑄 𝑠, 𝑎
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How to Solve MDP

95

DQN [Mnih et al. 2015, Human-level control through deep reinforcement learning]



GAMES 105 - Fundamentals of Character AnimationLibin Liu - SIST, Peking University

Multi-skill Characters

96[Liu et al. 2017: Learning to Schedule Control Fragments ]

?
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How to Solve MDP

• Policy Gradient approach
• Learning the value function/Q-function using the Bellman equations

• Compute approximate policy gradient according to value functions using Monte-Carlo 
method

• Update the policy using policy gradient

• Suitable for continuous problems

• Exa pl : REINFORCE, TRPO, PPO, …

97
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How to Solve MDP

98

[Liu et al. 2016. ControlGraphs] [Liu et al. 2018] [Peng et al. 2018. DeepMimic]
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Multi-skill Characters

99

State Machines of 
Tracking Controllers
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Generative Control Policies

100[Yao et al. Control VAE]
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What’s Next?

• Digital Cerebellum – Large Pretrained Model for Motion Control
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What’s Next?

• Cross-modality Generation
•  LLM  Text/Audio Motion/Control  Image/Video 

• Digital Actor?
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What’s Next

103
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That’s all for GAMES 105
Thank you!

104

aban·don [əˈband(ə)n]

adj. 常看常新


