Lecture 11

Learning to Walk

Libin Liu

School of Intelligence Science and Technology Peking University

Outline

- Walking and Dynamic Balance
- Simplified Models
- ZMP (Zero-Moment Point)
- Inverted Pendulum
- SIMBICON

Walking

phases of a walking gait cycle

Walking

Walking: move without loss of contact, or flight phases

Walking

Walking with Static Balance

Walking: move without loss of contact, or flight phases

Walking with Static Balance

Walking: move without loss of contact, or flight phases

Walking with Static Balance

Walking: move without loss of contact, or flight phases

Walking with Static Balance

Walking: move without loss of contact, or flight phases

Zero-Moment Point (ZMP)

Zero-Moment Point (ZMP)

Recall: A System of Links and Joints

$$
M \dot{\boldsymbol{v}}+C(\boldsymbol{x}, \boldsymbol{v})=\boldsymbol{f}+\boldsymbol{f}_{J}
$$

Recall: A System of Links and Joints

$$
M \dot{\boldsymbol{v}}+C(\boldsymbol{x}, \boldsymbol{v})=\boldsymbol{f}+\boldsymbol{f}_{J}
$$

Zero-Moment Point (ZMP)

Zero-Moment Point (ZMP)

Zero-Moment Point (ZMP)

Zero-Moment Point (ZMP)

$$
\boldsymbol{\tau}_{\mathrm{GRF}}=\sum_{i}\left(\boldsymbol{p}_{i}-\boldsymbol{p}\right) \times \boldsymbol{f}_{i}
$$

Assuming the ground is flat and level
so $\boldsymbol{p}_{i}-\boldsymbol{p}$ is always in the horizontal plane

$$
\begin{aligned}
\boldsymbol{\tau}_{\mathrm{GRF}} & =\sum_{i}\left(\boldsymbol{p}_{i}-\boldsymbol{p}\right) \times\left(f_{i}^{y}+f_{i}^{x z}\right) \\
& =\sum_{i}\left(\boldsymbol{p}_{i}-\boldsymbol{p}\right) \times f_{i}^{y}+\sum_{i}\left(\boldsymbol{p}_{i}-\boldsymbol{p}\right) \times f_{i}^{x Z}
\end{aligned}
$$

Zero-Moment Point (ZMP)

Zero-Moment Point (ZMP)

Zero-Moment Point (ZMP)

Can we find \boldsymbol{p} such that $\boldsymbol{\tau}_{\mathrm{GRF}}^{\chi Z}=0$?

Zero-Moment Point (ZMP)

Zero-Moment Point (ZMP)

Zero-Moment Point (ZMP)

The foot should not move in a stance phase

Zero-Moment Point (ZMP)

The position of \boldsymbol{p} is not known, but we assume

$$
\tau_{\mathrm{GRF}}^{\chi Z}=0
$$

So

$$
\boldsymbol{\tau}_{\mathrm{GRF}}=\tau_{\mathrm{GRF}}^{y}
$$

The foot should not move
in a stance phase

Zero-Moment Point (ZMP)

Static Equilibrium:

$$
\boldsymbol{f}_{\text {ankle }}+\boldsymbol{f}_{\mathrm{GRF}}+m \boldsymbol{g}=\mathbf{0}
$$

The foot should not move
in a stance phase

Zero-Moment Point (ZMP)

Static Equilibrium:

$$
\boldsymbol{f}_{\text {ankle }}+\boldsymbol{f}_{\mathrm{GRF}}+m \boldsymbol{g}=\mathbf{0}
$$

The moment around a reference point \boldsymbol{o} :

$$
\begin{gathered}
(\boldsymbol{u}-\boldsymbol{o}) \times \boldsymbol{f}_{\text {ankle }}+(\boldsymbol{p}-\boldsymbol{o}) \times \boldsymbol{f}_{\mathrm{GRF}}+(\boldsymbol{x}-\boldsymbol{o}) \times m \boldsymbol{g} \\
+\tau_{\mathrm{GRF}}^{y}+\boldsymbol{\tau}_{\mathrm{ankle}}=\mathbf{0}
\end{gathered}
$$

The foot should not move in a stance phase

Zero-Moment Point (ZMP)

The moment around a reference point \boldsymbol{o} :

$$
\begin{gathered}
(\boldsymbol{u}-\boldsymbol{o}) \times \boldsymbol{f}_{\text {ankle }}+(\boldsymbol{p}-\boldsymbol{o}) \times \boldsymbol{f}_{\mathrm{GRF}}+(\boldsymbol{x}-\boldsymbol{o}) \times m \boldsymbol{g} \\
+\tau_{\mathrm{GRF}}^{y}+\boldsymbol{\tau}_{\text {ankle }}=\mathbf{0}
\end{gathered}
$$

Horizontal components (moment projected onto $x z$ plane):

$$
\begin{aligned}
&\left((\boldsymbol{u}-\boldsymbol{o}) \times \boldsymbol{f}_{\text {ankle }}\right)^{x Z}+\left((\boldsymbol{p}-\mathbf{o}) \times \boldsymbol{f}_{\mathrm{GRF}}\right)^{x Z} \\
&+(\boldsymbol{x}-\boldsymbol{o}) \times m \boldsymbol{g}+\boldsymbol{\tau}_{\text {ankle }}^{x Z}=\mathbf{0}
\end{aligned}
$$

The foot should not move in a stance phase

Zero-Moment Point (ZMP)

The moment around a reference point \boldsymbol{o} :

$$
\begin{gathered}
(\boldsymbol{u}-\boldsymbol{o}) \times \boldsymbol{f}_{\text {ankle }}+(\boldsymbol{p}-\boldsymbol{o}) \times \boldsymbol{f}_{\mathrm{GRF}}+(\boldsymbol{x}-\boldsymbol{o}) \times m \boldsymbol{g} \\
+\tau_{\mathrm{GRF}}^{y}+\boldsymbol{\tau}_{\text {ankle }}=\mathbf{0}
\end{gathered}
$$

Horizontal components (moment projected onto $x z$ plane):

$$
\left((\boldsymbol{u}-\boldsymbol{o}) \times \boldsymbol{f}_{\text {ankle }}\right)^{x Z}+\left((\boldsymbol{p}-\mathbf{o}) \times \boldsymbol{f}_{\mathrm{GRF}}\right)^{x^{z}}
$$

$$
+(\boldsymbol{x}-\boldsymbol{o}) \times m \boldsymbol{g}+\boldsymbol{\tau}_{\text {ankle }}^{x Z}=\mathbf{0}
$$

We can solve this equation to find \boldsymbol{p}

Zero-Moment Point (ZMP)

\boldsymbol{p} is called Zero-Moment Point (ZMP) because it makes

$$
\tau_{\mathrm{GRF}}^{\chi z}=0
$$

and the horizontal moment

$$
\begin{aligned}
&\left((\boldsymbol{u}-\boldsymbol{o}) \times \boldsymbol{f}_{\text {ankle }}\right)^{x Z}+\left((\boldsymbol{p}-\mathbf{o}) \times \boldsymbol{f}_{\mathrm{GRF}}\right)^{x Z} \\
&+(\boldsymbol{x}-\boldsymbol{o}) \times m \boldsymbol{g}+\boldsymbol{\tau}_{\mathrm{ankle}}^{x Z}=\mathbf{0}
\end{aligned}
$$

The foot should not move in a stance phase

Zero-Moment Point (ZMP)

\boldsymbol{p} is called Zero-Moment Point (ZMP) because it makes

$$
\tau_{\mathrm{GRF}}^{x Z}=0
$$

and the horizontal moment

$$
\begin{aligned}
&\left((\boldsymbol{u}-\boldsymbol{o}) \times \boldsymbol{f}_{\text {ankle }}\right)^{x Z}+\left((\boldsymbol{p}-\mathbf{0}) \times \boldsymbol{f}_{\mathrm{GRF}}\right)^{x Z} \\
&+(\boldsymbol{x}-\boldsymbol{o}) \times m \boldsymbol{g}+\boldsymbol{\tau}_{\mathrm{ankle}}^{\chi Z}=\mathbf{0}
\end{aligned}
$$

The foot should not move in a stance phase

Zero-Moment Point (ZMP)

If the solution of

$$
\begin{aligned}
&\left((\boldsymbol{u}-\boldsymbol{o}) \times \boldsymbol{f}_{\text {ankle }}\right)^{x Z}+\left((\boldsymbol{p}-\mathbf{0}) \times \boldsymbol{f}_{\mathrm{GRF}}\right)^{x Z} \\
&+(\boldsymbol{x}-\boldsymbol{o}) \times m \boldsymbol{g}+\boldsymbol{\tau}_{\mathrm{ankle}}^{x Z}=\mathbf{0}
\end{aligned}
$$

\boldsymbol{p} is outside the support polygon

The foot should not move in a stance phase

Zero-Moment Point (ZMP)

If the solution of

$$
\begin{aligned}
&\left((\boldsymbol{u}-\boldsymbol{o}) \times \boldsymbol{f}_{\text {ankle }}\right)^{x Z}+\left((\boldsymbol{p}-\mathbf{o}) \times \boldsymbol{f}_{\mathrm{GRF}}\right)^{x Z} \\
&+(\boldsymbol{x}-\boldsymbol{o}) \times m \boldsymbol{g}+\boldsymbol{\tau}_{\mathrm{ankle}}^{x Z}=\mathbf{0}
\end{aligned}
$$

\boldsymbol{p} is outside the support polygon
\boldsymbol{p} could NOT be the center of pressure, because all the GRFs are applied within the polygon, so that

$$
\tau_{\mathrm{GRF}}^{x Z} \neq 0
$$

The foot should not move in a stance phase

Zero-Moment Point (ZMP)

If the solution of

$$
\begin{aligned}
&\left((\boldsymbol{u}-\boldsymbol{o}) \times \boldsymbol{f}_{\text {ankle }}\right)^{x Z}+\left((\boldsymbol{p}-\mathbf{0}) \times \boldsymbol{f}_{\mathrm{GRF}}\right)^{x Z} \\
&+(\boldsymbol{x}-\boldsymbol{o}) \times m \boldsymbol{g}+\boldsymbol{\tau}_{\text {ankle }}^{x Z}=\mathbf{0}
\end{aligned}
$$

\boldsymbol{p} is outside the support polygon
\boldsymbol{p} could NOT be the center of pressure, because all the GRFs are applied within the polygon, so that

$$
\tau_{\mathrm{GRF}}^{x z} \neq 0
$$

Or, if \boldsymbol{p}^{\prime} is the real center of pressure, we have

$$
\begin{gathered}
\left((\boldsymbol{u}-\boldsymbol{o}) \times \boldsymbol{f}_{\mathrm{ankle}}\right)^{x Z}+\left(\left(\boldsymbol{p}^{\prime}-\mathbf{0}\right) \times \boldsymbol{f}_{\mathrm{GRF}}\right)^{x Z} \\
+(\boldsymbol{x}-\boldsymbol{o}) \times m \boldsymbol{g}+\boldsymbol{\tau}_{\mathrm{ankle}}^{\chi Z} \neq \mathbf{0}
\end{gathered}
$$

Zero-Moment Point (ZMP)

If the solution of

$$
\begin{aligned}
&\left((\boldsymbol{u}-\boldsymbol{o}) \times \boldsymbol{f}_{\text {ankle }}\right)^{x Z}+\left((\boldsymbol{p}-\mathbf{0}) \times \boldsymbol{f}_{\mathrm{GRF}}\right)^{x Z} \\
&+(\boldsymbol{x}-\boldsymbol{o}) \times m \boldsymbol{g}+\boldsymbol{\tau}_{\text {ankle }}^{x Z}=\mathbf{0}
\end{aligned}
$$

The foot should not move in a stance phase
\boldsymbol{p} is outside the support polygon
\boldsymbol{p} could NOT be the center of pressure, because all the GRFs are applied within the polygon, so that

$$
\tau_{\mathrm{GRF}}^{x z} \neq 0
$$

Or, if \boldsymbol{p}^{\prime} is the real center of pressure, we have
the foot will rotate..

$$
\begin{gathered}
\left((\boldsymbol{u}-\boldsymbol{o}) \times \boldsymbol{f}_{\text {ankle }}\right)^{x Z}+\left(\left(\boldsymbol{p}^{\prime}-\mathbf{0}\right) \times \boldsymbol{f}_{\mathrm{GRF}}\right)^{x Z} \\
+(\boldsymbol{x}-\boldsymbol{o}) \times m \boldsymbol{g}+\boldsymbol{\tau}_{\mathrm{ankle}}^{\chi Z} \neq \mathbf{0}
\end{gathered}
$$

Zero-Moment Point (ZMP)

The existence of ZMP is an indication of dynamic balance

We can achieve balanced walking by controlling ZMP

But how?

The foot should not move in a stance phase

Simplified Models

- Simplify humanoid / biped robot into an abstract model
- Often consists of a CoM and a massless mechanism
- Need to map the state of the robot to the abstract model

[Coros et al. 2010]

[Mordatch et al. 2010]

Example: ZMP-Guided Control

Biped Walking Pattern Generation by using Preview
Control of Zero-Moment Point

Shuuji KAJITA, Fumio KANEHIRO, Kenji KANEKO, Kiyoshi FUJIWARA, Kensuke HARADA, Kazuhito YOKOI and Hirohisa HIRUKAWA

[Kajita et al. 2003]

Example: ZMP-Guided Control

Figure 9: HRP-2 Prototype (HRP-2P)[22]

[Kajita et al. 2003]

ASIMO

Walking == Falling + Step Planning

Inverted Pendulum Model (IPM)

Inverted Pendulum Model (IPM)

Inverted Pendulum Model (IPM)

Inverted Pendulum Model (IPM)

- Step Plan with IPM

Generalized Biped Walking Control

Stelian Coros Philippe Beaudoin Michiel van de Panne*
University of British Columbia

Figure 1: Real-time physics-based simulation of walking. The method provides robust control across a range of gaits, styles, characters, and skills. Motions are easily authored by novice users.
[Coros et al. 2010-Generalized Biped Walking Control]

Inverted Pendulum Model (IPM)

- Step Plan with IPM

- Map CoM of the character and the stance foot as IPM
- Plan the position of the next foot step so that the mass point rests at the top of the pendulum
- Create foot trajectory based on the step plan

- Compute target poses using IK

Inverted Pendulum Model (IPM)

- Step Plan with IPM

$$
\begin{aligned}
& \frac{1}{2} m v^{2}+m g h=\frac{1}{2} m v^{\prime 2}+m g h^{\prime} \\
& v^{\prime}=0 \text { and } h^{\prime}=L=\sqrt{h^{2}+d^{2}} \\
& d=v \sqrt{h / g+v^{2} /\left(4 g^{2}\right)}
\end{aligned}
$$

[Coros et al. 2010-Generalized Biped Walking Control]

Generalized walking control

[Coros et al. 2010]

SIMBICON

- SIMBICON (SIMple Blped Locomotion CONtrol)

- Yin et al. 2007

SIMBICON: Simple Biped Locomotion Control

KangKang Yin Kevin Loken Michiel van de Panne*

University of British Columbia

Figure 1: Real-time physics-based character simulation with our framework. (a) A single controller for a planar biped responds to unanticipated changes in terrain. (b) A walk controller reconstructed from motion capture data responds to a $350 \mathrm{~N}, 0.2 \mathrm{~s}$ diagonal push to the torso

SIMBICON

- Step 1: develop a cyclical base motion
- PD controllers track target angles
- FSM (Finite State Machine) or mocap

SIMBICON

- Step 2:
- control torso and swing-hip wrt world frame

$\tau_{A}=-\tau_{\text {torso }}-\tau_{B}$

Newton's third law

SIMBICON

- Step 3: COM feedback

COM velocity matters

COM position matters

SIMBICON

- Step 3: COM feedback

Swing Leg

SIMBICON

[Yin et al. 2007, SIMBICON]

Outline

- Walking and Dynamic Balance
- Simplified Models
- ZMP (Zero-Moment Point)
- Inverted Pendulum
- SIMBICON
- How to generalize to other motion?

Questions?

