GAMES 105 Fundamentals of Character Animation

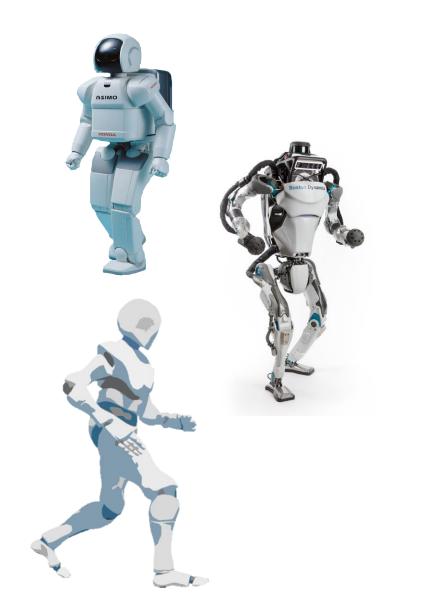
Lecture 11 Learning to Walk

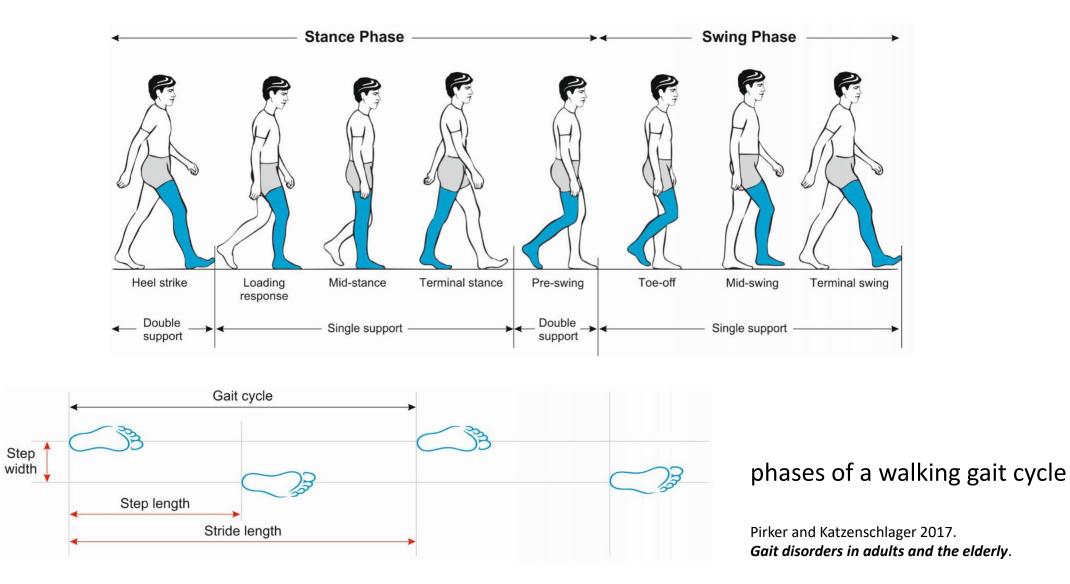
Libin Liu

School of Intelligence Science and Technology Peking University

Outline

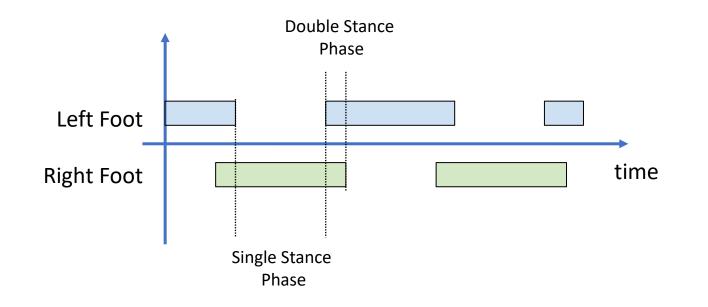
- Walking and Dynamic Balance
- Simplified Models
 - ZMP (Zero-Moment Point)
 - Inverted Pendulum
 - SIMBICON



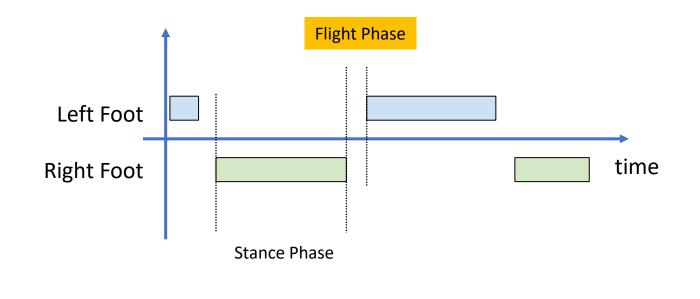


3

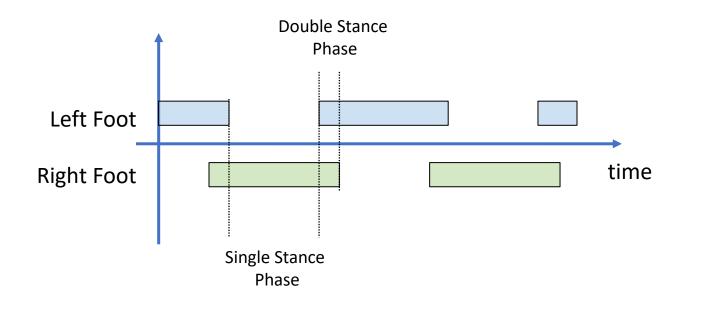
Walking



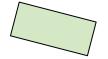
Walking: move without *loss of contact*, or flight phases



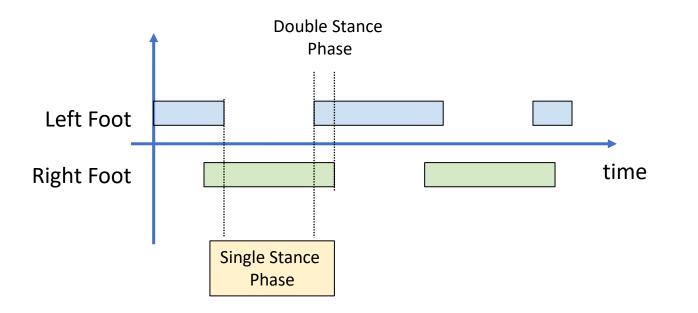
Running



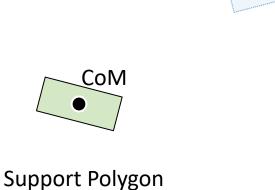
Walking: move without *loss of contact*, or flight phases

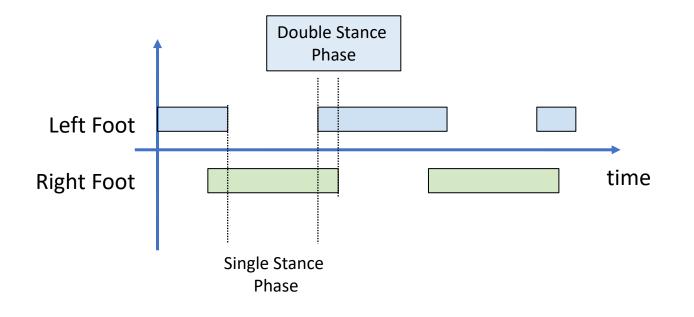


Libin Liu - SIST, Peking University

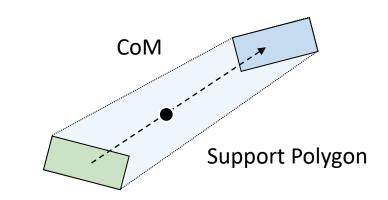


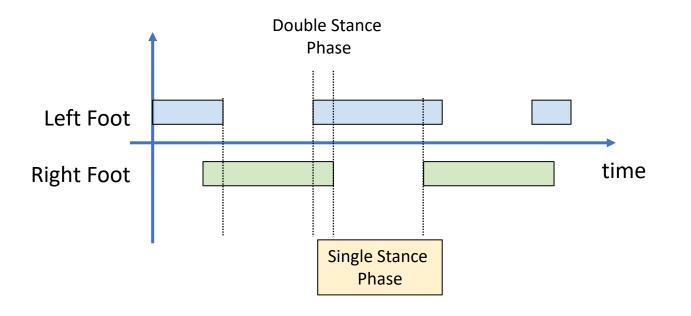
Walking: move without *loss of contact*, or flight phases



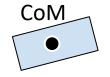


Walking: move without loss of contact, or flight phases



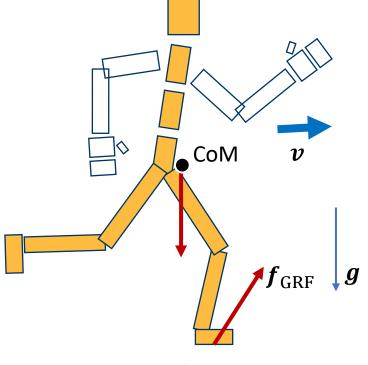


Walking: move without *loss of contact,* or flight phases



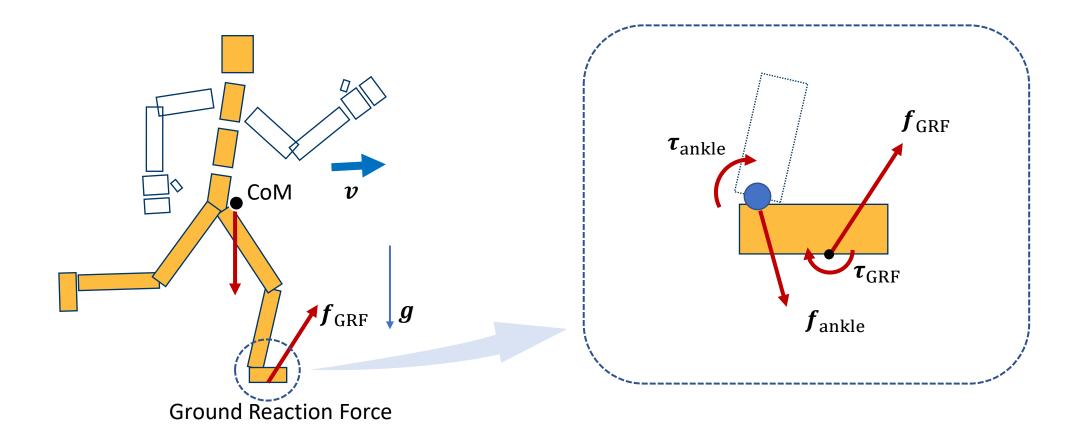
Support Polygon



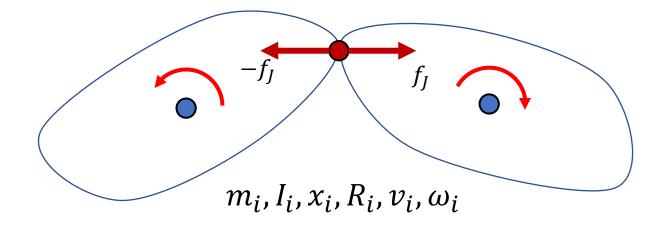


Ground Reaction Force

Libin Liu - SIST, Peking University



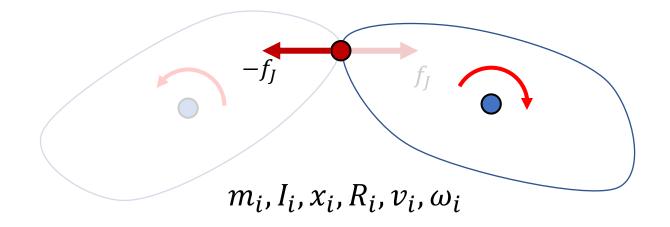
Recall: A System of Links and Joints



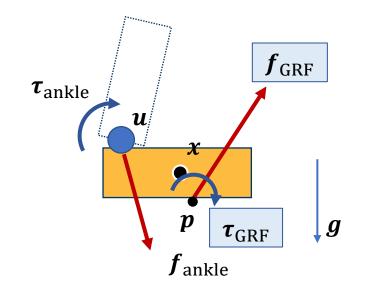
 $M\dot{\boldsymbol{v}} + C(\boldsymbol{x}, \boldsymbol{v}) = \boldsymbol{f} + \boldsymbol{f}_J$

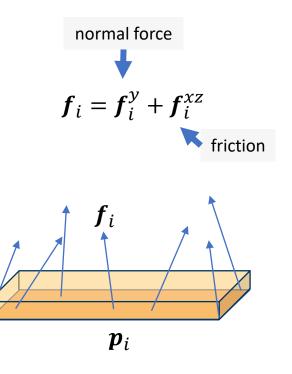
Libin Liu - SIST, Peking University

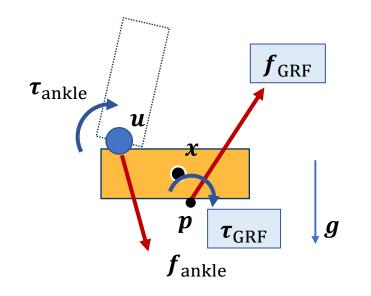
Recall: A System of Links and Joints

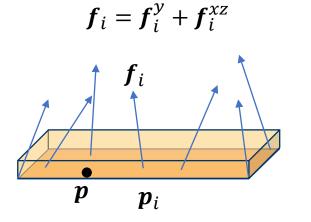


$$M\dot{\boldsymbol{v}} + C(\boldsymbol{x}, \boldsymbol{v}) = \boldsymbol{f} + \boldsymbol{f}_J$$



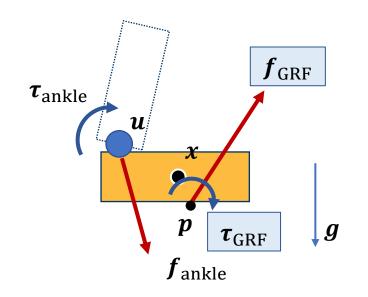


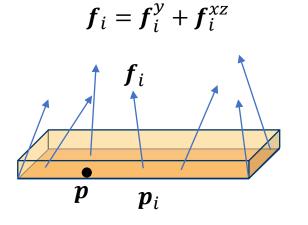




 $\boldsymbol{f}_{\mathrm{GRF}} = \sum_{i} \boldsymbol{f}_{i}$

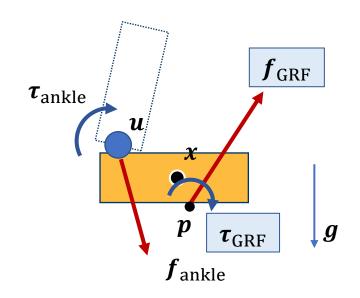
$$\boldsymbol{\tau}_{\mathrm{GRF}} = \sum_{i} (\boldsymbol{p}_{i} - \boldsymbol{p}) \times \boldsymbol{f}_{i}$$

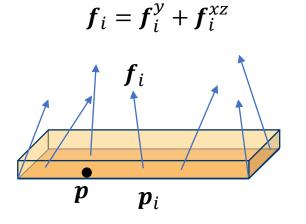




$$\boldsymbol{\tau}_{\mathrm{GRF}} = \sum_{i} (\boldsymbol{p}_{i} - \boldsymbol{p}) \times \boldsymbol{f}_{i}$$

Assuming the ground is flat and level so $p_i - p$ is always in the horizontal plane





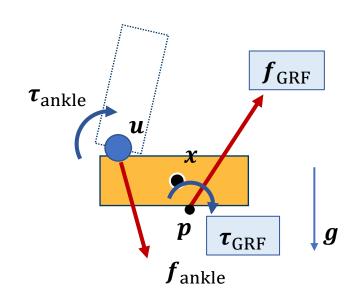
$$\boldsymbol{\tau}_{\mathrm{GRF}} = \sum_{i} (\boldsymbol{p}_{i} - \boldsymbol{p}) \times \boldsymbol{f}_{i}$$

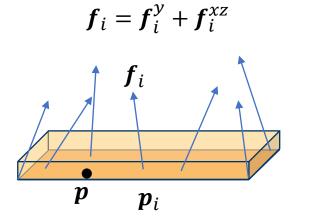
Assuming the ground is flat and level so $p_i - p$ is always in the horizontal plane

$$\boldsymbol{\tau}_{\text{GRF}} = \sum_{i} (\boldsymbol{p}_{i} - \boldsymbol{p}) \times (f_{i}^{\mathcal{Y}} + f_{i}^{xz})$$

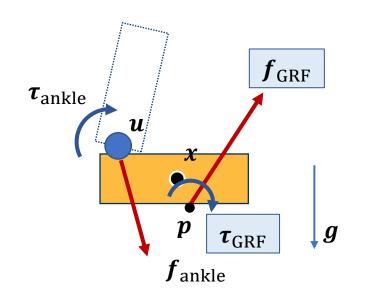
horizontal vertical
$$= \sum_{i} (\boldsymbol{p}_{i} - \boldsymbol{p}) \times f_{i}^{\mathcal{Y}} + \sum_{i} (\boldsymbol{p}_{i} - \boldsymbol{p}) \times f_{i}^{xz}$$
18

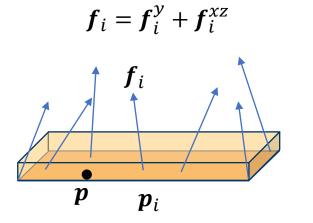
GAMES 105 - Fundamentals of Character Animation



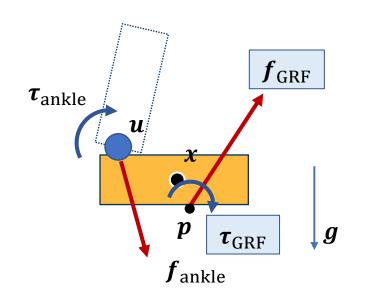


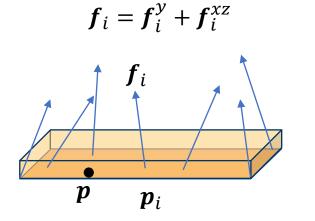
$$\boldsymbol{\tau}_{\text{GRF}}^{\boldsymbol{y}} = \sum_{i} (\boldsymbol{p}_{i} - \boldsymbol{p}) \times \boldsymbol{f}_{i}^{\boldsymbol{x}\boldsymbol{z}}$$
$$\boldsymbol{\tau}_{\text{GRF}}^{\boldsymbol{x}\boldsymbol{z}} = \sum_{i} (\boldsymbol{p}_{i} - \boldsymbol{p}) \times \boldsymbol{f}_{i}^{\boldsymbol{y}}$$





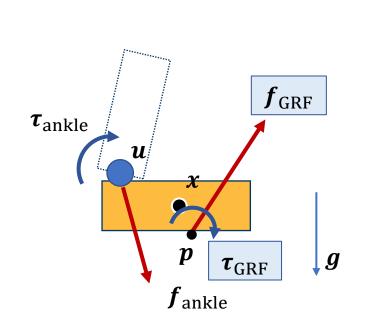
$$\boldsymbol{\tau}_{\text{GRF}}^{xz} = \sum_{i} (\boldsymbol{p}_{i} - \boldsymbol{p}) \times \boldsymbol{f}_{i}^{y}$$
$$= \sum_{i} \boldsymbol{p}_{i} \times \boldsymbol{f}_{i}^{y} - \boldsymbol{p} \times \left(\sum_{i} f_{i}^{y}\right) \boldsymbol{y}$$

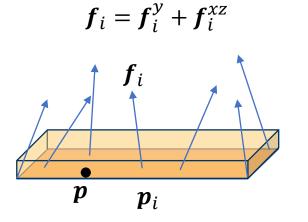


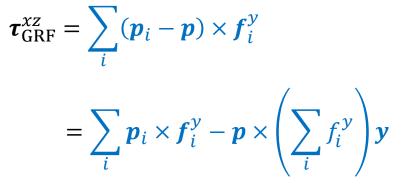


$$\boldsymbol{\tau}_{\text{GRF}}^{xz} = \sum_{i} (\boldsymbol{p}_{i} - \boldsymbol{p}) \times \boldsymbol{f}_{i}^{y}$$
$$= \sum_{i} \boldsymbol{p}_{i} \times \boldsymbol{f}_{i}^{y} - \boldsymbol{p} \times \left(\sum_{i} f_{i}^{y}\right) \boldsymbol{y}$$

Can we find \boldsymbol{p} such that $\boldsymbol{\tau}_{\mathrm{GRF}}^{\mathrm{\chi}\mathrm{Z}}=0$?

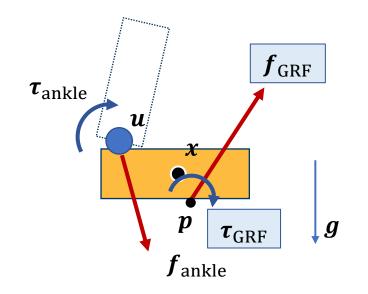


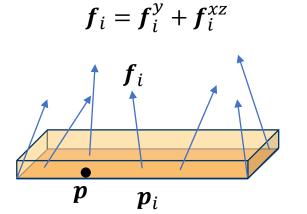




Center of Pressure
$$\boldsymbol{p} = \frac{\sum_{i} \boldsymbol{p}_{i} f_{i}^{\mathcal{Y}}}{\sum_{i} f_{i}^{\mathcal{Y}}} \longrightarrow \boldsymbol{\tau}_{\text{GRF}}^{xz} = 0$$

GAMES 105 - Fundamentals of Character Animation



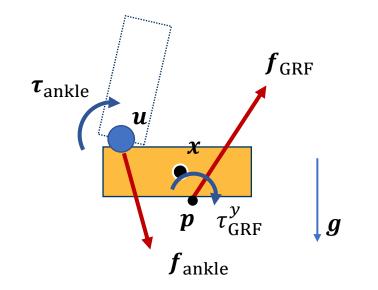


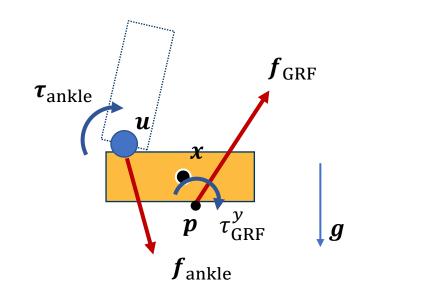
Center of Pressure

$$\boldsymbol{p} = \frac{\sum_{i} \boldsymbol{p}_{i} f_{i}^{\mathcal{Y}}}{\sum_{i} f_{i}^{\mathcal{Y}}}$$

 $\boldsymbol{f}_{\mathrm{GRF}} = \sum_{i} \boldsymbol{f}_{i}$

$$\boldsymbol{\tau}_{\mathrm{GRF}} = \boldsymbol{\tau}_{\mathrm{GRF}}^{\boldsymbol{\mathcal{Y}}} = \sum_{i} (\boldsymbol{p}_{i} - \boldsymbol{p}) \times \boldsymbol{f}_{i}^{\boldsymbol{\chi}\boldsymbol{z}}$$





The position of \boldsymbol{p} is not known, but we assume

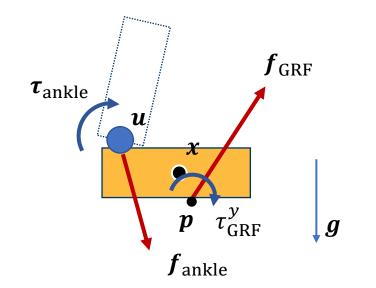
 $au_{
m GRF}^{xz} = \mathbf{0}$

 $\boldsymbol{\tau}_{\mathrm{GRF}} = \boldsymbol{\tau}_{\mathrm{GRF}}^{\mathcal{Y}}$

The foot should not move in a **stance phase**

So

Static Equilibrium:



$$\boldsymbol{f}_{\mathrm{ankle}} + \boldsymbol{f}_{\mathrm{GRF}} + m\boldsymbol{g} = \boldsymbol{0}$$

The foot should not move in a **stance phase**

Libin Liu - SIST, Peking University

0

 au_{ankle}

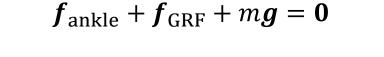
Zero-Moment Point (ZMP)

f_{GRF}

g

 $au_{
m GRF}^{y}$

Static Equilibrium:



The moment around a reference point *o*:

$$(\boldsymbol{u} - \boldsymbol{o}) \times \boldsymbol{f}_{ankle} + (\boldsymbol{p} - \boldsymbol{o}) \times \boldsymbol{f}_{GRF} + (\boldsymbol{x} - \boldsymbol{o}) \times m\boldsymbol{g}$$

 $+ \tau_{GRF}^{\boldsymbol{y}} + \boldsymbol{\tau}_{ankle} = \boldsymbol{0}$

The foot should not move in a **stance phase**

p

 f_{ankle}

 f_{GRF} f_{GRF} f_{gRF}

The moment around a reference point *o*:

$$(\boldsymbol{u} - \boldsymbol{o}) \times \boldsymbol{f}_{ankle} + (\boldsymbol{p} - \boldsymbol{o}) \times \boldsymbol{f}_{GRF} + (\boldsymbol{x} - \boldsymbol{o}) \times m\boldsymbol{g}$$

 $+ \tau_{GRF}^{\mathcal{Y}} + \boldsymbol{\tau}_{ankle} = \boldsymbol{0}$

Horizontal components (moment projected onto *xz* plane):

 $+(x-o) \times mg + \tau_{ankle}^{\chi z} = 0$

$$((\boldsymbol{u} - \boldsymbol{o}) \times \boldsymbol{f}_{ankle})^{\boldsymbol{\chi}\boldsymbol{z}} + ((\boldsymbol{p} - \boldsymbol{o}) \times \boldsymbol{f}_{GRF})^{\boldsymbol{\chi}\boldsymbol{z}}$$

 f_{GRF} f_{GRF} $p \tau_{GRF}^{y}$ f_{ankle}

The moment around a reference point *o*:

$$(\boldsymbol{u} - \boldsymbol{o}) \times \boldsymbol{f}_{ankle} + (\boldsymbol{p} - \boldsymbol{o}) \times \boldsymbol{f}_{GRF} + (\boldsymbol{x} - \boldsymbol{o}) \times m\boldsymbol{g}$$

 $+ \tau_{GRF}^{\mathcal{Y}} + \boldsymbol{\tau}_{ankle} = \boldsymbol{0}$

Horizontal components (moment projected onto *xz* plane):

$$((\boldsymbol{u} - \boldsymbol{o}) \times \boldsymbol{f}_{ankle})^{xz} + ((\boldsymbol{p} - \boldsymbol{o}) \times \boldsymbol{f}_{GRF})^{xz}$$

$$+(x-o) \times mg + \tau_{ankle}^{xz} = 0$$

We can solve this equation to find $oldsymbol{p}$

p is called Zero-Moment Point (ZMP) because it makes

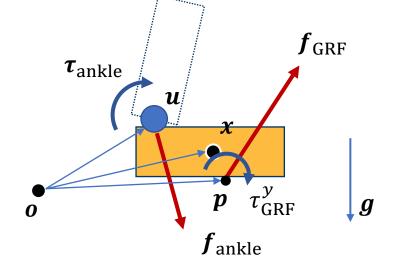
 $\tau_{\rm GRF}^{\chi z} = \mathbf{0}$

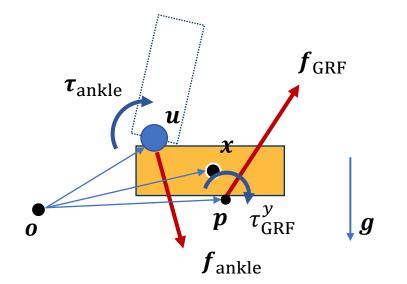
and the horizontal moment

$$((u - o) \times f_{ankle})^{xz} + ((p - o) \times f_{GRF})^{xz}$$

+ $(x - o) \times mg + \tau_{ankle}^{xz} = 0$

30





The foot should not move

in a stance phase

p is called Zero-Moment Point (ZMP) because it makes

 $\tau_{\rm GRF}^{xz} = \mathbf{0}$

and the horizontal moment

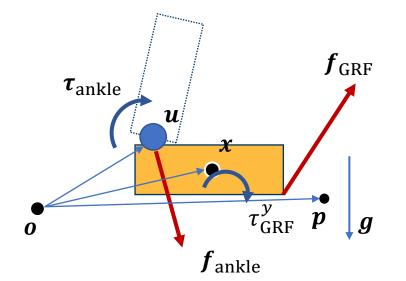
GAMES 105 - Fundamentals of Character Animation

$$((u - o) \times f_{ankle})^{xz} + ((p - o) \times f_{GRF})^{xz}$$
$$+ (x - o) \times mg + \tau_{ankle}^{xz} = 0$$

Only when p is within the support polygon!

If the solution of

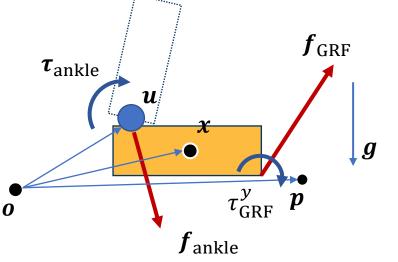
$$((u - o) \times f_{ankle})^{xz} + ((p - o) \times f_{GRF})^{xz} + (x - o) \times mg + \tau_{ankle}^{xz} = 0$$



 $oldsymbol{p}$ is outside the support polygon

If the solution of

$$((\boldsymbol{u} - \boldsymbol{o}) \times \boldsymbol{f}_{ankle})^{\boldsymbol{x}\boldsymbol{z}} + ((\boldsymbol{p} - \boldsymbol{o}) \times \boldsymbol{f}_{GRF})^{\boldsymbol{x}\boldsymbol{z}} + (\boldsymbol{x} - \boldsymbol{o}) \times \boldsymbol{m}\boldsymbol{g} + \boldsymbol{\tau}_{ankle}^{\boldsymbol{x}\boldsymbol{z}} = \boldsymbol{0}$$



 $oldsymbol{p}$ is outside the support polygon

p could NOT be the center of pressure, because all the GRFs are applied within the polygon, so that

$$\tau_{\rm GRF}^{xz} \neq \mathbf{0}$$

$\tau_{\rm GRF}^{y} p$

 au_{ankle}

 $((\boldsymbol{u} - \boldsymbol{o}) \times \boldsymbol{f}_{ankle})^{\chi Z} + ((\boldsymbol{p} - \boldsymbol{o}) \times \boldsymbol{f}_{GRF})^{\chi Z}$

If the solution of

$$+ (x - o) \times mg + \tau_{ankle}^{\chi z} = 0$$

p is outside the support polygon

p could NOT be the center of pressure, because all the GRFs are applied within the polygon, so that

$$\tau_{\rm GRF}^{xz} \neq \mathbf{0}$$

Or, if p' is the real center of pressure, we have

The foot should not move in a stance phase

fankle

Zero-Moment Point (ZMP)

f_{GRF}

g

$$((\boldsymbol{u} - \boldsymbol{o}) \times \boldsymbol{f}_{ankle})^{\boldsymbol{\chi}\boldsymbol{z}} + ((\boldsymbol{p}' - \boldsymbol{o}) \times \boldsymbol{f}_{GRF})^{\boldsymbol{\chi}\boldsymbol{z}} + (\boldsymbol{x} - \boldsymbol{o}) \times \boldsymbol{m}\boldsymbol{g} + \boldsymbol{\tau}_{ankle}^{\boldsymbol{\chi}\boldsymbol{z}} \neq \boldsymbol{0}$$

0

If the solution of

$$((\boldsymbol{u} - \boldsymbol{o}) \times \boldsymbol{f}_{ankle})^{\boldsymbol{x}\boldsymbol{z}} + ((\boldsymbol{p} - \boldsymbol{o}) \times \boldsymbol{f}_{GRF})^{\boldsymbol{x}\boldsymbol{z}} + (\boldsymbol{x} - \boldsymbol{o}) \times \boldsymbol{m}\boldsymbol{g} + \boldsymbol{\tau}_{ankle}^{\boldsymbol{x}\boldsymbol{z}} = \boldsymbol{0}$$

 $oldsymbol{p}$ is outside the support polygon

p could NOT be the center of pressure, because all the GRFs are applied within the polygon, so that

$$\tau_{\rm GRF}^{xz} \neq \mathbf{0}$$

 $((\boldsymbol{u} - \boldsymbol{o}) \times \boldsymbol{f}_{ankle})^{\chi z} + ((\boldsymbol{p}' - \boldsymbol{o}) \times \boldsymbol{f}_{GRF})^{\chi z}$

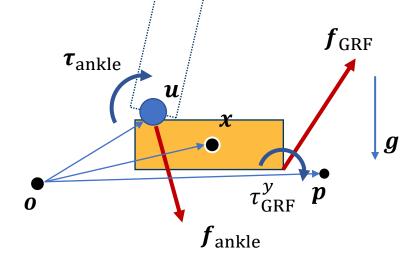
Or, if p' is the real center of pressure, we have

The foot should not move in a **stance phase**

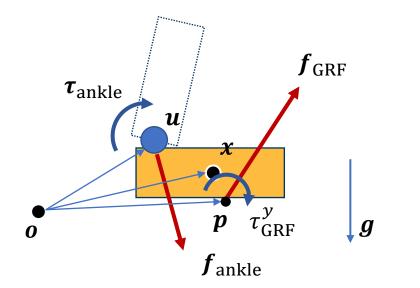
$$+ (x - o) \times mg + \tau_{ankle}^{\chi z} \neq 0$$

the foot

will rotate...



The existence of ZMP is an indication of dynamic balance

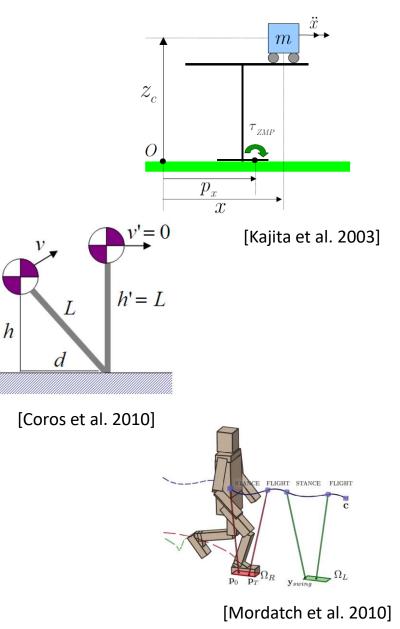


We can achieve balanced walking by controlling ZMP

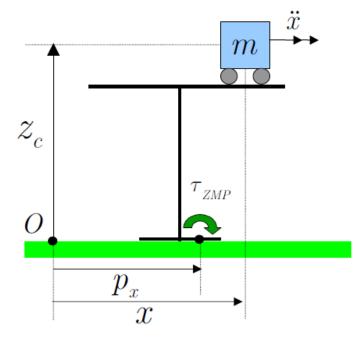
But how?

Simplified Models

- Simplify humanoid / biped robot into an abstract model
 - Often consists of a CoM and a massless mechanism
 - Need to map the state of the robot to the abstract model
- Plan the control and movement of the model
 - Optimization
 - Dynamic programming
 - Optimal control
 - MPC
- Track the planned motion of the abstract model
 - Inverse Kinematics
 - Inverse Dynamics



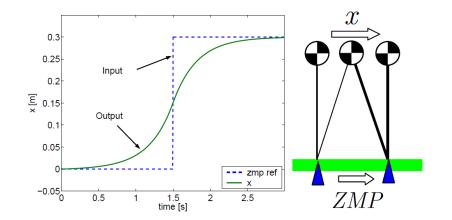
Example: ZMP-Guided Control



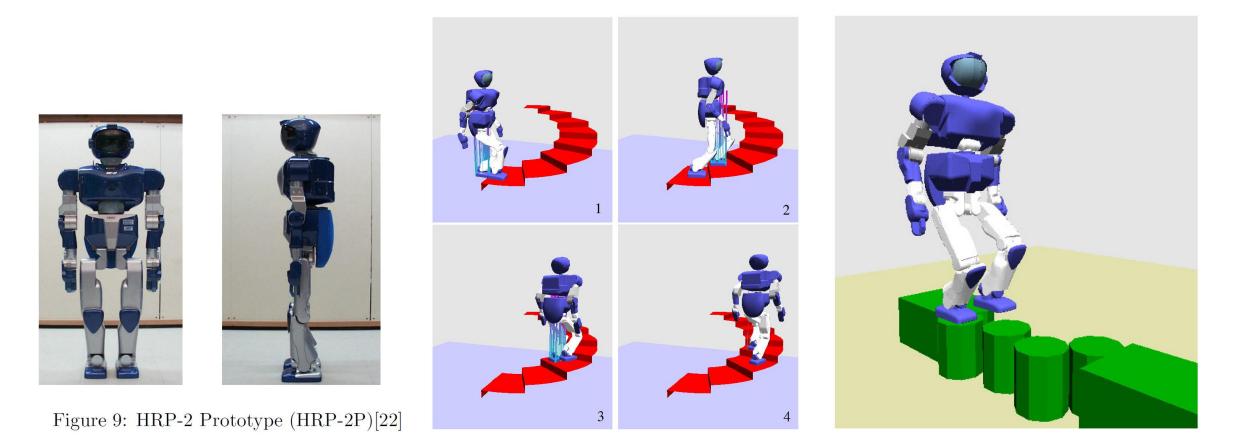
[Kajita et al. 2003]

Biped Walking Pattern Generation by using Preview Control of Zero-Moment Point

Shuuji KAJITA, Fumio KANEHIRO, Kenji KANEKO, Kiyoshi FUJIWARA, Kensuke HARADA, Kazuhito YOKOI and Hirohisa HIRUKAWA



Example: ZMP-Guided Control



[Kajita et al. 2003]

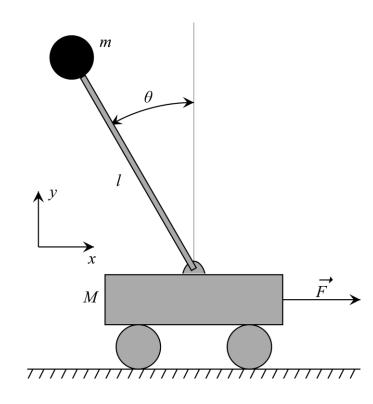
Walking == Falling + Step Planning

Libin Liu - SIST, Peking University

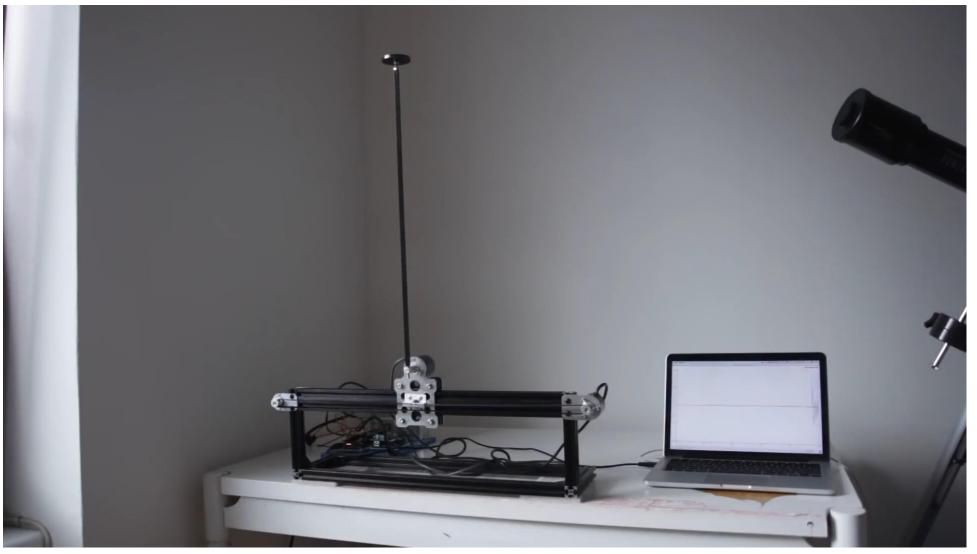
GAMES 105 - Fundamentals of Character Animation

Passive Dynamic Walker 41

$$\ddot{\theta} = \frac{g}{\ell} \sin \theta$$



Inverted pendulum on a cart



Inverted pendulum on a cart https://www.youtube.com/watch?v=nOSTzpA0nGk

GAMES 105 - Fundamentals of Character Animation

• Step Plan with IPM

Generalized Biped Walking Control

Stelian Coros Philippe Beaudoin Michiel van de Panne*

University of British Columbia

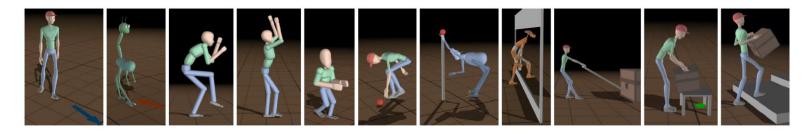
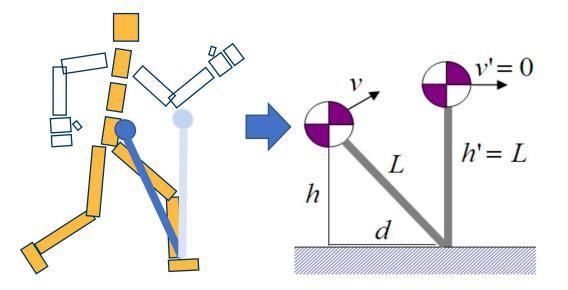


Figure 1: *Real-time physics-based simulation of walking. The method provides robust control across a range of gaits, styles, characters, and skills. Motions are easily authored by novice users.*

[Coros et al. 2010 - Generalized Biped Walking Control]

- Step Plan with IPM
 - Map CoM of the character and the stance foot as IPM
 - Plan the position of the next foot step so that the mass point rests at the top of the pendulum
 - Create foot trajectory based on the step plan
 - Compute target poses using IK



[Coros et al. 2010 - Generalized Biped Walking Control]

• Step Plan with IPM

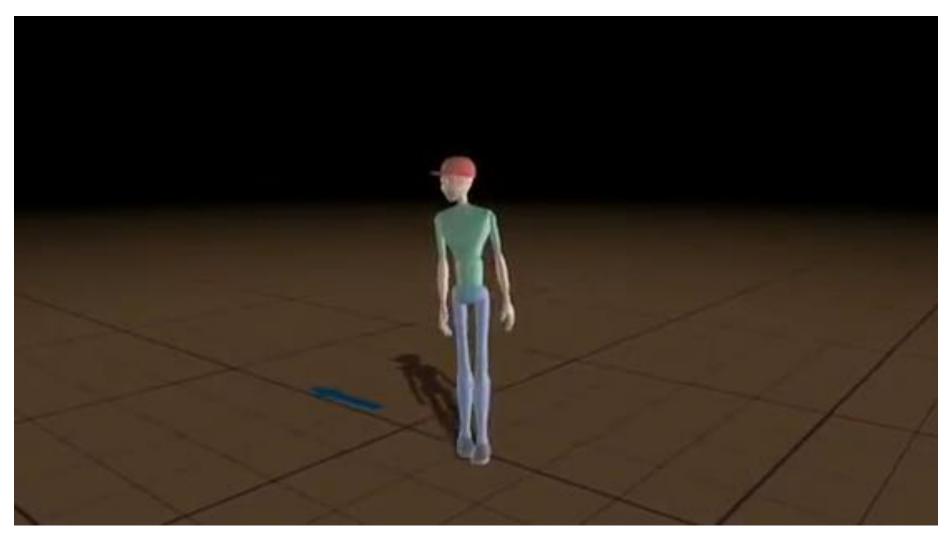
$$\frac{1}{2}mv^{2} + mgh = \frac{1}{2}mv'^{2} + mgh'$$

$$v' = 0 \text{ and } h' = L = \sqrt{h^{2} + d^{2}}$$

$$d = v\sqrt{h/g + v^{2}/(4g^{2})}.$$

[Coros et al. 2010 - Generalized Biped Walking Control]

Generalized walking control



[Coros et al. 2010]

Libin Liu - SIST, Peking University

GAMES 105 - Fundamentals of Character Animation

SIMBICON

• SIMBICON (SIMple Blped Locomotion CONtrol)

• Yin et al. 2007

SIMBICON: Simple Biped Locomotion Control

KangKang Yin Kevin Loken Michiel van de Panne*

University of British Columbia

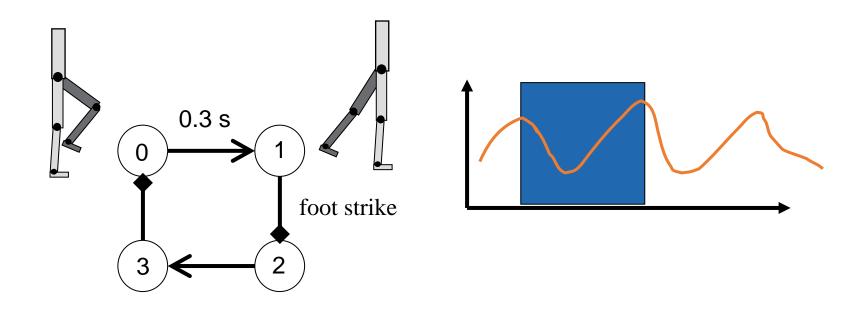
Figure 1: *Real-time physics-based character simulation with our framework. (a) A single controller for a planar biped responds to unanticipated changes in terrain. (b) A walk controller reconstructed from motion capture data responds to a 350N, 0.2s diagonal push to the torso.*

Libin Liu - SIST, Peking University

GAMES 105 - Fundamentals of Character Animation

SIMBICON

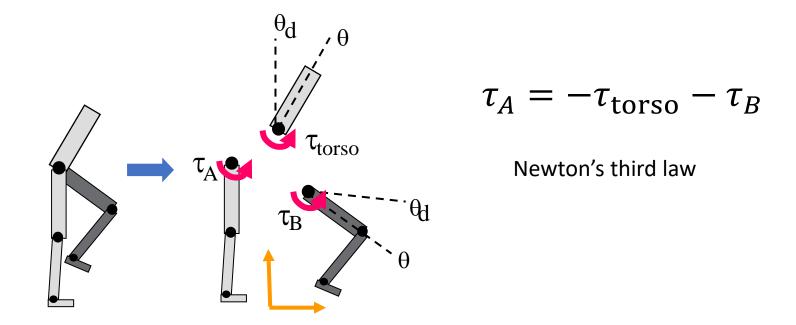
- Step 1: develop a cyclical base motion
 - PD controllers track target angles
 - FSM (Finite State Machine) or mocap



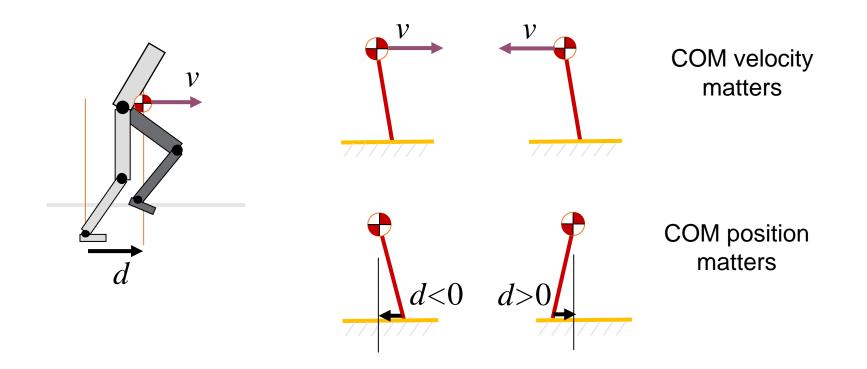
SIMBICON

• Step 2:

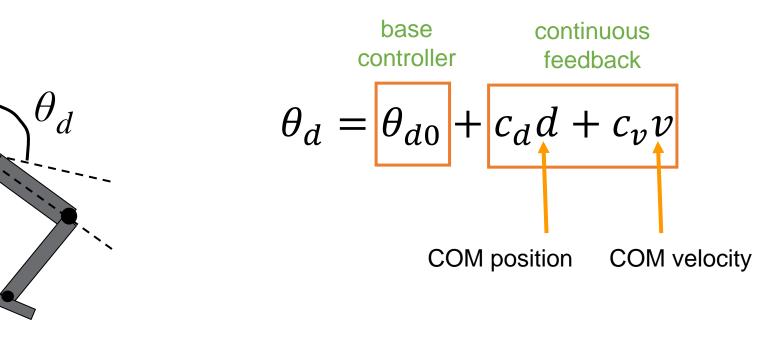
• control torso and swing-hip wrt world frame



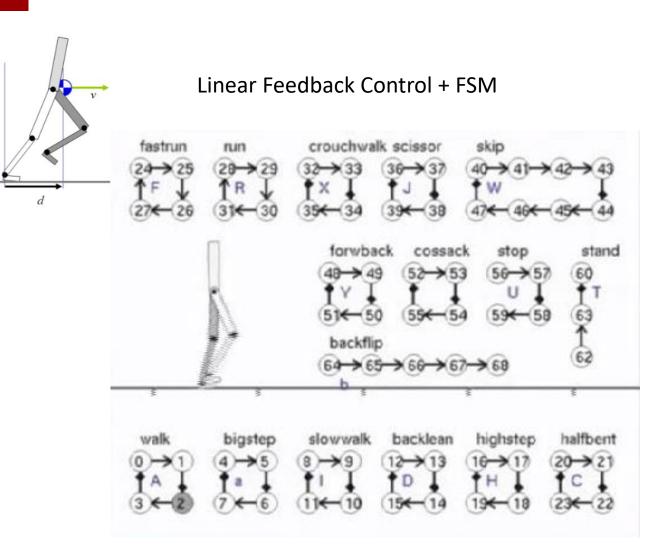
• Step 3: COM feedback

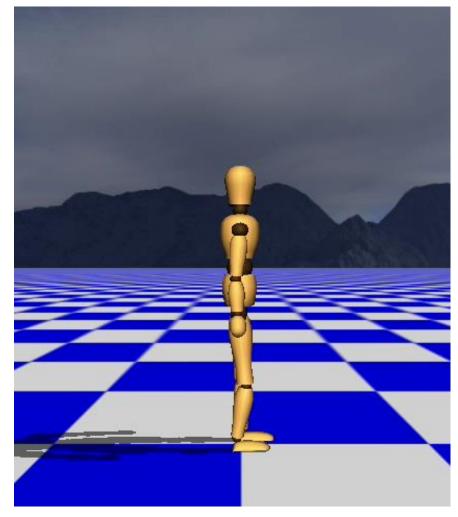


• Step 3: COM feedback



Swing Leg





[Yin et al. 2007, SIMBICON]

Outline

- Walking and Dynamic Balance
- Simplified Models
 - ZMP (Zero-Moment Point)
 - Inverted Pendulum
 - SIMBICON
- How to generalize to other motion?

