GAMES 105 Fundamentals of Character Animation

Lecture 10 Controlling Characters

Libin Liu

School of Intelligence Science and Technology Peking University

Outline

- More about PD (Proportional-Derivative) control
 - Stable PD control
- Feedforward Motion Control
 - Trajectory optimization
- Feedback Motion Control
 - Static balance

PD Control for Characters

control

PD control computes torques based on errors

PD control computes torques based on errors

- Steady state error
- Motion falls behind the reference

$$\tau = k_p(\bar{q} - q) - k_d \dot{q}$$

PD control computes torques based on errors

- Steady state error
- Motion falls behind the reference

High-gain (k_p) control is more precise...

 $\tau = k_p(\bar{q} - q) - k_d \dot{q}$

PD control computes torques based on errors

- Steady state error
- Motion falls behind the reference

High-gain (k_p) control is more precise but less stable...

 $\tau = k_p(\bar{q} - q) - k_d \dot{q}$

Semi-implicit Euler Integration

$$v_{n+1} = v_n + h \frac{f}{m}$$
$$x_{n+1} = x_n + h v_{n+1}$$

$$f = -k_p x - k_d v$$

Semi-implicit Euler Integration

$$v_{n+1} = v_n + hf$$

$$x_{n+1} = x_n + hv_{n+1}$$

$$f = -k_p x - k_d v$$

Semi-implicit Euler Integration

$$v_{n+1} = v_n + h\left(-k_p x_n - k_d v_n\right)$$

$$x_{n+1} = x_n + hv_{n+1}$$

$$k_p, k_d \qquad x, v \\ \hline m \qquad m = 1$$

$$f = -k_p x - k_d v$$

Semi-implicit Euler Integration

$$\begin{bmatrix} v_{n+1} \\ x_{n+1} \end{bmatrix} = \begin{bmatrix} 1 - k_d h & -k_p h \\ h(1 - k_d h) & 1 - k_p h^2 \end{bmatrix} \begin{bmatrix} v_n \\ x_n \end{bmatrix}$$

$$\begin{array}{c}
k_p, k_d & x, v \\
\hline m & m = 1 \\
f = -k_p x - k_d v
\end{array}$$

Semi-implicit Euler Integration

$$\begin{bmatrix} v_{n+1} \\ x_{n+1} \end{bmatrix} = \begin{bmatrix} 1 - k_d h & -k_p h \\ h(1 - k_d h) & 1 - k_p h^2 \end{bmatrix} \begin{bmatrix} v_n \\ x_n \end{bmatrix}$$
$$\mathbf{s}_{n+1} = A \mathbf{s}_n$$
$$\mathbf{s}_{n+1} = A^n \mathbf{s}_1$$

$$\begin{array}{c}
k_p, k_d & x, v \\
\hline m & m = 1 \\
f = -k_p x - k_d v
\end{array}$$

$$s_{n+1} = As_n$$
 $rightarrow$ $s_{n+1} = A^n s_1$

Assume *A* has two eigenvalues λ_1, λ_2 and two eigen vectors v_1, v_2 . Note $\lambda_i \in \mathbb{C}$

$$A = P \begin{bmatrix} \lambda_1 & \\ & \lambda_2 \end{bmatrix} P^{-1} \qquad P = \begin{bmatrix} \vdots & \vdots \\ \boldsymbol{v}_1 & \boldsymbol{v}_2 \\ \vdots & \vdots \end{bmatrix}$$

$$k_p, k_d \qquad x, v \\ \hline m \qquad m = 1$$

$$f = -k_p x - k_d v$$

$$A = \begin{bmatrix} 1 - k_d h & -k_p h \\ h(1 - k_d h) & 1 - k_p h^2 \end{bmatrix}$$

$$s_{n+1} = As_n$$
 \Rightarrow $s_{n+1} = A^ns_1$

Assume *A* has two eigenvalues λ_1, λ_2 and two eigen vectors v_1, v_2 . Note $\lambda_i \in \mathbb{C}$

$$A = P \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} P^{-1} \qquad P = \begin{bmatrix} \vdots & \vdots \\ v_1 & v_2 \\ \vdots & \vdots \end{bmatrix}$$
$$\mathbf{s}_{n+1} = P \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} P^{-1} \mathbf{s}_n$$

$$k_p, k_d \qquad x, v \\ \hline m \qquad m = 1$$

$$f = -k_p x - k_d v$$

$$A = \begin{bmatrix} 1 - k_d h & -k_p h \\ h(1 - k_d h) & 1 - k_p h^2 \end{bmatrix}$$

$$s_{n+1} = As_n$$
 $rightarrow$ $s_{n+1} = A^ns_1$

Assume *A* has two eigenvalues λ_1, λ_2 and two eigen vectors v_1, v_2 . Note $\lambda_i \in \mathbb{C}$

$$A = P \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} P^{-1} \qquad P = \begin{bmatrix} \vdots & \vdots \\ v_1 & v_2 \\ \vdots & \vdots \end{bmatrix}$$
$$\mathbf{z}_{n+1} = \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} \mathbf{z}_n \qquad \mathbf{z} = P^{-1} \mathbf{s}$$

$$k_p, k_d \qquad x, v \\ \hline m \qquad m = 1$$

$$f = -k_p x - k_d v$$

$$A = \begin{bmatrix} 1 - k_d h & -k_p h \\ h(1 - k_d h) & 1 - k_p h^2 \end{bmatrix}$$

$$s_{n+1} = As_n$$
 \Rightarrow $s_{n+1} = A^ns_1$

Assume *A* has two eigenvalues λ_1, λ_2 and two eigen vectors v_1, v_2 . Note $\lambda_i \in \mathbb{C}$

$$A = P \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} P^{-1} \qquad P = \begin{bmatrix} \vdots & \vdots \\ v_1 & v_2 \\ \vdots & \vdots \end{bmatrix}$$
$$\mathbf{z}_{n+1} = \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} \mathbf{z}_n \implies \mathbf{z}_{n+1} = \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix}^n \mathbf{z}_1$$

$$f = -k_p x - k_d v$$

$$A = \begin{bmatrix} 1 - k_d h & -k_p h \\ h(1 - k_d h) & 1 - k_p h^2 \end{bmatrix}$$

$$s_{n+1} = As_n$$
 $rightarrow$ $s_{n+1} = A^ns_1$

Assume *A* has two eigenvalues λ_1, λ_2 and two eigen vectors v_1, v_2 . Note $\lambda_i \in \mathbb{C}$

$$A = P \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} P^{-1} \qquad P = \begin{bmatrix} \vdots & \vdots \\ v_1 & v_2 \\ \vdots & \vdots \end{bmatrix}$$
$$\mathbf{z}_{n+1} = \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} \mathbf{z}_n \implies \mathbf{z}_{n+1} = \begin{bmatrix} \lambda_1^n \\ \lambda_2^n \end{bmatrix} \mathbf{z}_1$$

$$k_p, k_d \qquad x, v$$

$$m = 1$$

$$f = -k_p x - k_d v$$

$$A = \begin{bmatrix} 1 - k_d h & -k_p h \\ h(1 - k_d h) & 1 - k_p h^2 \end{bmatrix}$$

$$\mathbf{z}_{n+1} = \begin{bmatrix} \lambda_1 & \\ & \lambda_2 \end{bmatrix} \mathbf{z}_n \implies \mathbf{z}_{n+1} = \begin{bmatrix} \lambda_1^n & \\ & \lambda_2^n \end{bmatrix} \mathbf{z}_1$$

 $\lambda_1, \lambda_2 \in \mathbb{C}$ are eigenvalues of A

 $\text{if } |\lambda_1| > 1 \quad \Longrightarrow \quad \lim_{n \to \infty} \| \boldsymbol{z}_n \| \to \infty$

The system is unstable!

$$\begin{array}{c|c}
k_p, k_d & x, v \\
\hline & m & m = 1
\end{array}$$

$$f = -k_p x - k_d v$$

$$A = \begin{bmatrix} 1 - k_d h & -k_p h \\ h(1 - k_d h) & 1 - k_p h^2 \end{bmatrix}$$

$$\mathbf{z}_{n+1} = \begin{bmatrix} \lambda_1 & \\ & \lambda_2 \end{bmatrix} \mathbf{z}_n \implies \mathbf{z}_{n+1} = \begin{bmatrix} \lambda_1^n & \\ & \lambda_2^n \end{bmatrix} \mathbf{z}_1$$

 $\lambda_1, \lambda_2 \in \mathbb{C}$ are eigenvalues of A

 $\text{if } |\lambda_1| > 1 \quad \Longrightarrow \quad \lim_{n \to \infty} \|\boldsymbol{z}_n\| \to \infty$

The system is unstable!

Condition of stability: $|\lambda_i| \leq 1$ for all λ_i

$$k_p, k_d \qquad x, v \\ \hline m \qquad m = 1$$

$$f = -k_p x - k_d v$$

$$A = \begin{bmatrix} 1 - k_d h & -k_p h \\ h(1 - k_d h) & 1 - k_p h^2 \end{bmatrix}$$

$$f = -k_p x - k_d v$$

$$A = \begin{bmatrix} 1 - k_d h & -k_p h \\ h(1 - k_d h) & 1 - k_p h^2 \end{bmatrix}$$

PD Control for Characters

- Determining gain and damping coefficients can be difficult...
 - A typical setting $k_p = 200$, $k_d = 20$ for a 50kg character
 - Light body requires smaller gains
 - Dynamic motions need larger gains
- High-gain/high-damping control can be unstable, so small times is necessary
 - $h = 0.5 \sim 1 \text{ms}$ is often used, or $1000 \sim 2000 \text{Hz}$
 - Higher gain/damping requires smaller time step

A More Stable PD Control

Semi-implicit Euler Integration

$$v_{n+1} = v_n + h\left(-k_p x_n - k_d v_n\right)$$

$$x_{n+1} = x_n + hv_{n+1}$$

$$k_p, k_d \qquad x, v \\ \hline m \qquad m = 1$$

$$f = -k_p x - k_d v$$

$$v_{n+1} = v_n + h(-k_p x_n - k_d v_{n+1})$$

 $x_{n+1} = x_n + hv_{n+1}$

A More Stable PD Control

$$v_{n+1} = v_n + h(-k_p x_n - k_d v_{n+1})$$

$$x_{n+1} = x_n + h v_{n+1}$$

$$\begin{bmatrix} v_{n+1} \\ x_{n+1} \end{bmatrix} = \frac{1}{1 + hk_d} \begin{bmatrix} 1 & -k_p h \\ h & 1 + k_d h - k_p h^2 \end{bmatrix} \begin{bmatrix} v_n \\ x_n \end{bmatrix}$$

$$f = -k_p x - k_d v$$

A More Stable PD Control

$$f = -k_p x_n - k_d v_n$$

$$k_p, k_d \qquad x, v$$

$$f = -k_p x - k_d v$$

Stable PD Control

$$Kp = 30$$

$$Kd = 0.5$$

$$dt = 1/60s$$

Red : Reference Motion
Blue: Simulated Motion

$$\tau_{\text{int}} = -\mathbf{K}_p(\mathbf{q}^n + \dot{\mathbf{q}}^n \Delta t - \bar{\mathbf{q}}^{n+1}) - \mathbf{K}_d(\dot{\mathbf{q}}^n + \ddot{\mathbf{q}}^n \Delta t)$$

Stable Proportional-Derivative Controllers

Jie Tan* Karen Liu[†] Greg Turk[‡] Georgia Institute of Technology

PD Control for Characters

- Determining gain and damping coefficients can be difficult...
 - A typical setting $k_p = 200$, $k_d = 20$ for a 50kg character
 - Light body requires smaller gains
 - Dynamic motions need larger gains
- High-gain/high-damping control can be unstable, so small times is necessary
 - $h = 0.5 \sim 1 \text{ms}$ is often used, or $1000 \sim 2000 \text{Hz}$
 - $h = 1/120 \text{s} \sim 1/60 \text{s}$, or 120Hz/60Hz with Stable PD
 - Higher gain/damping requires smaller time step

Tracking Mocap

Tracking Mocap with Root Forces/Torques

τ_j : joint torques

Apply τ_i to "child" body

Apply $-\tau_j$ to "parent" body

All forces/torques sum up to zero

 f_0 , τ_0 : root force / torque

Apply f_0 to the root body

Apply au_0 to the root body

Non-zero net force/torque on the character!

Physically Plausible Animation

Party Animals

Totally Accurate Battle Simulator https://www.youtube.com/watch?v=WFKGWfdG3bU

Trajectory Optimization

Find the trajectories:

Simulation trajectory: s_0, s_1, \dots, s_T

Control trajectory: a_0, a_1, \dots, a_{T-1}

that minimize the objective function

$$\min_{\{s_t, a_t\}} f(s_T) + \sum_{t=0}^{T-1} f(s_t, a_t)$$

and satisfy the constraints:

$$M\dot{\boldsymbol{v}} + C(\boldsymbol{x}, \boldsymbol{v}) = \boldsymbol{f} + J^T \lambda$$

Equations of motion

 $g(\mathbf{x}, \mathbf{v}) \ge 0$ constraints

[Witkin and Kass 1988 – Spacetime constraints]

Compute a target trajectory $\bar{x}(t)$ such that the simulated trajectory x(t)is a sine curve.

$$x \quad \bar{x}(t) = ?$$

Compute a target trajectory $\bar{x}(t)$ such that the simulated trajectory x(t)is a sine curve.

$$\min_{\{x_n, v_n, \bar{x}_n\}} \sum_{n=0}^N (\sin(t_n) - x_n)^2$$

s.t.
$$v_{n+1} = v_n + h(k_p(\bar{x}_n - x_n) - k_d v_n)$$

 $x_{n+1} = x_n + hv_{n+1}$

$$x \quad \overline{x(t)} = ?$$

$$\frac{x(t)}{x(t)} = \sin(t)$$

$$\frac{x(t)}{x(t)} = \sin(t)$$

s.t.
$$v_{n+1} = v_n + h(k_p(\bar{x}_n - x_n) - k_d v_n)$$

 $x_{n+1} = x_n + hv_{n+1}$

$$x \quad \overline{x(t)} = ?$$

$$y'' \quad \overline{y''} \quad \overline{y'''} \quad \overline{y'''} \quad \overline{y'''} \quad \overline{y'''} \quad \overline{y'''} \quad \overline{y'''} \quad \overline{y'''}$$

Hard constraints:

$$\min_{\{x_n, v_n, \bar{x}_n\}} \sum_{n=0}^{N} (\sin(t_n) - x_n)^2 + w_{\bar{x}} \sum_{n=0}^{N} \bar{x}_n^2$$

s.t.
$$v_{n+1} = v_n + h(k_p(\bar{x}_n - x_n) - k_d v_n)$$

 $x_{n+1} = x_n + hv_{n+1}$

Soft constraints:

$$\min_{\{x_n, v_n, \bar{x}_n\}} \sum_{n=0}^{N} (\sin(t_n) - x_n)^2 + w_{\bar{x}} \sum_{n=0}^{N} \bar{x}_n^2 + w_v \sum_{n=0}^{N} (v_{n+1} - v_n - h(k_p(\bar{x}_n - x_n) - k_d v_n))^2 + w_x \sum_{n=0}^{N} (x_{n+1} - x_n - hv_{n+1})^2$$

Collocation methods:

Assume the optimization variables $\{x_n, v_n, \bar{x}_n\}$ are values of a set of parametric curves

• typically polynomials or splines

Optimize the parameters of the curves $\boldsymbol{\theta}$ instead

• with smaller number of variables than the original problem

$$\min_{\{x_n, v_n, \bar{x}_n\}} \sum_{n=0}^{N} \left(\sin(t_n; \theta) - x(t_n; \theta) \right)^2 + w_{\bar{x}} \sum_{n=0}^{N} \bar{x}^2(t_n; \theta)$$

s.t.
$$v(t_{n+1};\theta) = v(t_n)$$

+ $hk_p(\bar{x}(t_n;\theta) - x(t_n;\theta)) - hk_d v(t_n;\theta)$

$$x(t_{n+1};\theta) = x(t_n;\theta) + hv(t_{n+1};\theta)$$

How to solve this optimization problem?

$$\min_{\{x_n, v_n, \bar{x}_n\}} \sum_{n=0}^{N} (\sin(t_n) - x_n)^2 + \sum_{n=0}^{N} \bar{x}_n^2$$

s.t. $v_{n+1} = v_n + h (k_p (\bar{x}_n - x_n) - k_d v_n)$
 $x_{n+1} = x_n + h v_{n+1}$
A very simple example

How to solve this optimization problem?

Gradient-based approaches:

- Gradient descent
- Newton's methods
- Quasi-Newton methods
- •

$$\min_{\{x_n, v_n, \bar{x}_n\}} \sum_{n=0}^{N} (\sin(t_n) - x_n)^2 + \sum_{n=0}^{N} \bar{x}_n^2$$

s.t.
$$v_{n+1} = v_n + h(k_p(\bar{x}_n - x_n) - k_d v_n)$$

 $x_{n+1} = x_n + hv_{n+1}$

A very simple example

How to solve this optimization problem?

Gradient-based approaches:

- Gradient descent
- Newton's methods
- Quasi-Newton methods
-

Trajectory Optimization for Tracking Control

Problem with Gradient-Based Methods

- The optimization problem is usually highly nonlinear, gradients are unreliable
- The system is a black box with unknow dynamics, gradients are not available

Trajectory optimization landscapes of humanoid locomotion

Libin Liu - SIST, Peking University

GAMES 105 - Fundamentals of Character Animation

[Hämäläinen et al 2020 - Visualizing Movement Control Optimization Landscapes]

Derivative-Free Optimization

- Iterative methods
 - Goal: find the variables x that optimize f(x)
 - Determining an initial guess of *x*
 - Repeat:
 - Propose a set of candidate variables $\{x_i\}$ according to x
 - Evaluate the objective function $f_i = f(x_i)$
 - Update the estimation for *x*

Derivative-Free Optimization

- Iterative methods
 - Goal: find the variables x that optimize f(x)
 - Determining an initial guess of *x*
 - Repeat:
 - Propose a set of candidate variables $\{x_i\}$ according to x
 - Evaluate the objective function $f_i = f(\mathbf{x}_i)$
 - Update the estimation for *x*
- Examples:
 - Bayesian optimization, Evolution strategies (e.g. CMA-ES), Stochastic optimization, Sequential Monte Carlo methods,

- Covariance matrix adaptation evolution strategy (CMA-ES)
 - A widely adopted derivative-free method in character animation

Generation 4

Generation 5

[Hansen 2006, The CMA evolution strategy: a comparing review]

Generation 6

Goal: find the variables x that optimize f(x)

- Initialize Gaussian distribution $\boldsymbol{x} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$
- Repeat:
 - sample candidate variables $\{x_i\} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$
 - Evaluate the objective function $f_i = f(\mathbf{x}_i)$
 - Involve simulation and generate simulation trajectories
 - Sort { f_i } and keep the top N elite samples
 - Update $\boldsymbol{\mu}, \boldsymbol{\Sigma}$ according to the elite samples

Handstand

[Al Borno et al. 2013 - Trajectory Optimization for Full-Body Movements with Complex Contacts]

45

Libin Liu - SIST, Peking University

GAMES 105 - Fundamentals of Character Animation

- SAmpling-based Motion CONtrol [Liu et al. 2010, 2015]
 - Motion Clip \rightarrow Open-loop control trajectory
 - A sequential Monte-Carlo method

Sampling & Simulation

Libin Liu - SIST, Peking University

GAMES 105 - Fundamentals of Character Animation

49

SAMCON Iterations

Libin Liu - SIST, Peking University

GAMES 105 - Fundamentals of Character Animation

50

Libin Liu - SIST, Peking University

GAMES 105 - Fundamentals of Character Animation

51

Libin Liu - SIST, Peking University

GAMES 105 - Fundamentals of Character Animation

Feedforward Control

Libin Liu - SIST, Peking University

GAMES 105 - Fundamentals of Character Animation

Feedforward Control

Feedforward Control

Libin Liu - SIST, Peking University

A simple strategy to maintain balance:

• Keep projected CoM close to the center of support polygon while tracking a standing pose

A simple strategy to maintain balance:

- Keep projected CoM close to the center of support polygon while tracking a standing pose
- Use PD control to compute feedback torque

$$\tau = k_p (\overline{c} - c) - k_d \dot{c} \leftarrow \text{CoM velocity}$$

desired CoM position CoM position (e.g. center of support polygon) the character

A simple strategy to maintain balance:

- Keep projected CoM close to the center of support polygon while tracking a standing pose
- Use PD control to compute feedback torque

A simple strategy to maintain balance:

- Keep projected CoM close to the center of support polygon while tracking a standing pose
- Use PD control to compute feedback torque

 $\tau = k_p(\overline{\boldsymbol{c}} - \boldsymbol{c}) - k_d \dot{\boldsymbol{c}}$

• Apply the feedback torque at ankles (ankle strategy) or hips (hip strategy)

Can we use joint torques au_i to mimic the effect of a force f applied at x

- Note that the desired force *f* is not actually applied
- Also called "virtual force"

Can we use joint torques τ_i to mimic the **effect** of a force **f** applied at **x**

Make \boldsymbol{f} and $\boldsymbol{\tau}_i$ done the same work

Can we use joint torques τ_i to mimic the **effect** of a force **f** applied at **x**

Make \boldsymbol{f} and $\boldsymbol{\tau}_i$ done the same power

$$P = \boldsymbol{f}^T \dot{\boldsymbol{x}} = \boldsymbol{\tau}^T \dot{\boldsymbol{\theta}}$$

Can we use joint torques τ_i to mimic the **effect** of a force **f** applied at **x**

Make \boldsymbol{f} and $\boldsymbol{\tau}_i$ done the same power

$$P = \boldsymbol{f}^T \dot{\boldsymbol{x}} = \boldsymbol{\tau}^T \dot{\boldsymbol{\theta}}$$

Forward kinematics $\mathbf{x} = g(\mathbf{\theta}) \Rightarrow \dot{\mathbf{x}} = J\dot{\mathbf{\theta}}$

 $J = \frac{\partial g}{\partial \theta}$
Jacobian Transpose Control

Can we use joint torques τ_i to mimic the **effect** of a force **f** applied at **x**

Make \boldsymbol{f} and $\boldsymbol{\tau}_i$ done the same power

$$P = \boldsymbol{f}^T \dot{\boldsymbol{x}} = \boldsymbol{\tau}^T \dot{\boldsymbol{\theta}}$$

Forward kinematics $\mathbf{x} = g(\mathbf{\theta}) \Rightarrow \dot{\mathbf{x}} = J\dot{\mathbf{\theta}}$

$$\boldsymbol{f}^{T} \boldsymbol{J} \dot{\boldsymbol{\theta}} = \boldsymbol{\tau}^{T} \dot{\boldsymbol{\theta}} \qquad \boldsymbol{J} = \frac{\partial g}{\partial \boldsymbol{\theta}}$$

Jacobian Transpose Control

Can we use joint torques τ_i to mimic the **effect** of a force **f** applied at **x**

Make \boldsymbol{f} and $\boldsymbol{\tau}_i$ done the same power

$$P = \boldsymbol{f}^T \dot{\boldsymbol{x}} = \boldsymbol{\tau}^T \dot{\boldsymbol{\theta}}$$

Forward kinematics $\mathbf{x} = g(\mathbf{\theta}) \Rightarrow \dot{\mathbf{x}} = J\dot{\mathbf{\theta}}$

$$\boldsymbol{\tau} = J^T \boldsymbol{f} \qquad \qquad J = \frac{\partial g}{\partial \boldsymbol{\theta}}$$

Recall: Geometric Approach

$$J = \frac{\partial g}{\partial \theta} = \begin{pmatrix} \frac{\partial g}{\partial \theta_0} & \frac{\partial g}{\partial \theta_1} & \cdots & \frac{\partial g}{\partial \theta_n} \end{pmatrix}$$

Assuming all joints are hinge joint

Jacobian Transpose Control

Can we use joint torques τ_i to mimic the **effect** of a force **f** applied at **x**

Make f and τ_i done the same power $\tau = J^T f$ $J = \frac{\partial g}{\partial \theta}$

$$\tau_i = (x - p_i) \times f$$

Static Balance

A simple strategy to maintain balance:

- Keep projected CoM close to the center of support polygon while tracking a standing pose
- Use PD control to compute feedback virtual force

$$f = k_p(\overline{\boldsymbol{c}} - \boldsymbol{c}) - k_d \dot{\boldsymbol{c}}$$

Static Balance

A simple strategy to maintain balance:

- Keep projected CoM close to the center of support polygon while tracking a standing pose
- Use PD control to compute feedback virtual force

 $f = k_p(\overline{\boldsymbol{c}} - \boldsymbol{c}) - k_d \dot{\boldsymbol{c}}$

 Assuming f is applied to the CoM, compute necessary joint torques using Jacobian transpose control to achieve it

Static Balance

A fancier strategy:

- Mocap tracking as an objective function
- Controlling both the CoM position/momentum and the angular momentum
- Solve a one-step optimization problem to compute joint torques

[Macchietto et al. 2009 - Momentum Control for Balance]

Outline

- More about PD (Proportional-Derivative) control
 - Stable PD control
- Feedforward Motion Control
 - Trajectory optimization
- Feedback Motion Control
 - Static balance
 - Dynamic balance?

