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. Problems of Kinematic Methods

* Interaction with the environment
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Physics-based Character Animation

[ControlVAE — Yao et al. 2022]
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Physics-based Character Animation

[ControlVAE — Yao et al. 2022]
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. Outline

Simulation Basis
* Numerical Integration: Euler methods

Equations of Rigid Bodies
* Rigid Body Kinematics
 Newton-Euler equations

Articulated Rigid Bodies

e Joints and constraints

Contact Models

* Penalty-based contact
* Constraint-based contact

https://www.cs.cmu.edu/~baraff/sigcourse/
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. Dynamics of a Particle
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. Dynamics of a Particle

x(t=0)
v(t = 0)

.—»

m

f

x(t=10) =7
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. Dynamics of a Particle

x(t), v(t)
o—

m

f
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. Dynamics of a Particle

x(t), v(t)

.—>f

m
= ma
a="7v
V=X
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. Dynamics of a Particle

x(t), v(t)

Libin Liu - SIST, Peking University GAMES 105 - Fundamentals of Character Animation



. Dynamics of a Particle

x(t), v(t)

0—>f
m
f:ma a=f/m
a="7v m) v=vytat
_ 1
V=X x=x0+v0t+§at2
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. Dynamics of a Particle

x(t), v(t) /x(t = 10) A
.—f \ :x0+10v0+50£ )
m
f=ma a=f/m
a="v m) v=vytat
v=x x=x0+v0t+%at2
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. Dynamics of a Particle

x(t), v(t)

. | x(t=10) =7
m
— ma a=f(xvt)/m
t
a =7 SN v=v0+ft0adt
V=X x=x0+ftt0vdt
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. Temporal Discretization

x = x(t)

C x, =x(t,) t,=nh

Simulation time step
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. Temporal Discretization

xo h xTL
a=f(x,v,t)/m a=f(x,v,t)/m
vV ="v,+ fti) adt l Vpe1 = Up + ftt"“ adt
X =xg+ fti) vdt Xpt1 = X + ftt”“ vdt
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. Numerical Integration




. Numerical Integration

Xn+1 = Xn + X0
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. Numerical Integration

Xn+1 = Xp + X1 h
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. Numerical Integration

* Explicit/Forward Euler Integration

Vne1 = Uy + ayh
Xn+1 = Xp + Uyh

* Implicit/Backward Euler Integration

Un+1 = Up + Apeth
Xn+1 = Xp + Upyrh
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. Numerical Integration

* Explicit/Forward Euler Integration

Vne1 = Uy + ayh
Xp + Vph

Xn+1

* Implicit/Backward Euler Integration

Vn+1 = VUpy + Cln_|_1h @ Requires “future” information
Xn+1 = Xp + Upyrh
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. Numerical Integration

* Explicit/Forward Euler Integration

Vne1 = Uy + ayh
Xp + Vph

An+1
 Implicit/Backward Euler Integration

Un_|_1 = Un + f(xn+1, Vn+1)h @ Requires “future” information
Xn41 = Xp + Unyth

21
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. Numerical Integration

* Explicit/Forward Euler Integration
Vi1 = Uy + ayh
Xn+1 = Xpn + Vb

 Implicit/Backward Euler Integration
Vn+1 = VUpy + an+1h @ Requires “future” information

Xn+1 = Xn + Vnirh

» Symplectic / Semi-implicit Euler Integration
Un+1 — Un + anh 4 All information is current
Xny1 = Xp + Upy1h
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Mass on a Spring

[ = —kx

Explicit Euler Integration Semi-implicit Euler Integration  Implicit Euler Integration
% = —ﬁ v = —ﬁ v = _kxn+1
n+1 n m n+1 n m n+1 n m
Xn+1 = X + Vph Xn+1 = Xn + Vpirh Xn+1 = Xp + Vpirh

23
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[ = —kx
k=k/m

Explicit Euler Integration Semi-implicit Euler Integration Implicit Euler Integration

o PR N i) Y R O I | el

Xn+1 h 1 11%n Xn+1l  Lh 1 — kh2l 1Xn —h 1 1 [*n+1 Xn
4

2 |
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. Mass on a Spring

[ = —kx

Explicit Euler Integration Semi-implicit Euler Integration Implicit Euler Integration
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. Numerical Integration

- D
* Explicit/Forward Euler Unt1 = Vn + f(Xn, )R

Symplectic/Semi-implicit Euler | X =t v, h )
4 I
Unt1 = Up + f (X, vp)h

X =X, +V,.1h
L n+1 n n+1 )

* Fast, no need to solve equations

e Can be unstable under large time step

* Implicit/Backward Euler
e Rock stable (unconditionally)

4 N
Ung1 = Vn + [ (K41, Vns) R

Xn+1 = Xp + Vpy1h
\_ )

* Slow, need to solve a large problem




. More Advanced Integration

* Runge—Kutta methods
* Variational integration
* Position-based dynamics (PBD)

27
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. Rigid Bodies

* They are rigid....
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. Position and Orientation

)

29
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. Position and Orientation

)

x’=x+R7‘0

30
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. Position and Orientation

)

x'=x+Rryg=x+7r

31
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. Linear and Angular Velocity

)

x'=x+Rryg=x+r

dx’

dt

32
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. Linear and Angular Velocity

dx'

& x' = x + Rr,
dt 0

)

x'=x+Rryg=x+r

dx’
dt

=7

33
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. Linear and Angular Velocity

dx' L
=9 =X+R7‘O

dt I

v v
R)

x'=x+Rryg=x+r

dx’
dt

=7
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. Linear and Angular Velocity

???
dx' . ?
& x' = x + Rry

dt I

v v
R)

x'=x+Rryg=x+r

dx’
dt

=7
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. Linear and Angular Velocity

2??
L)

dx' L
=9 =X+R7‘O

dt

v v
R)

x'=x+Rryg=x+r

dx’
dt

=7

36
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. Linear and Angular Velocity

?2?2?
o
X =X T'O
dt
! |
D 1Y
)
RRT =1
x'=x+Rryg=x+r ¥
d(RRT)
dX’ dt —

=7

dt
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. Linear and Angular Velocity

2??
L)

dx' L
=9 =X+R7‘O

dt
! |
v 1%
)
RRT =1
x'=x+Rryg=x+r ¥

RRT + RRT =0

dx’
dt

=7
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. Linear and Angular Velocity

?2??
o ]
X =X T'O
dt
[ |
v 1%
)
RRT =1
x'=x+Rryg=x+r ¥
, RRT + (RRT)" =0
dx . s
dt

RRT is a Skew-Symmetric Matrix

39
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. Linear and Angular Velocity

77
(:)56’ — X‘I‘RTO

{4

dx'
dt

x'=x+Rryg=x+r ¥

dx’
dt

=7
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. Linear and Angular Velocity

dt
! |
v v
x)
R = R
x'=x+Rrg=x+r @]
S »
dx’
R,
dt RRT
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. Linear and Angular Velocity

dx' . .
— o x' =x+ w X (Rry)

dt
! |
v v
x)
R = R
x'=x+Rrg=x+r @]
S »
dx’
R,
dt RRT
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. Linear and Angular Velocity

v: linear velocity

w: angular velocity
x'=x+Rrg=x+r

vVi=v+4+wXr

43
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. Angular Velocity and Rotation Matrix

Rodrigues' rotation formula

ox=x"—x

= (sinf)uxXx+ (1—cosf)ux(uxx)

44
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. Angular Velocity and Rotation Matrix

!/
X
~ Rodrigues' rotation formula
5) Sx=x"—x
X

= (sinf)uxXx+ (1—cosf)ux(uxx)

.

dx B dx do
dt df dt

= Qu X x

X =

45
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. Angular Velocity and Rotation Matrix

Rodrigues' rotation formula

ox=x"—x

= (sinf)uxXx+ (1—cosf)ux(uxx)

.

,_dx_dx d@_g o
YT a4 T do dr . 4T
] = g
X=wWXX
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. Angular Velocity and Rotation Matrix

w: angular velocity — R = [w]«R

Z

47
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. Angular Velocity and Rotation Matrix

w: angular velocity — R = [w]«R
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. Angular Velocity and Rotation Matrix

w: angular velocity — R = [w]«R

y I
A w R=|ex e, e
I B
I N N | |
0 * R=|éx &, él=|wxeée, wxe, wxe,
R | |
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. Angular Velocity and Rotation Matrix

w: angular velocity — R = [w]«R

y I B
A w R=|ex e, e
I B
T o
Y > R=|é, &, é|=[w]i|ex € e
I I
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. Linear and Angular Velocity

v: linear velocity

w: angular velocity
x'=x+Rrg=x+r

vVi=v+4+wXr

51
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. Numerical Integration

% ’@

R' =7

52
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. Numerical Integration

% ’@

R = [w]«R

53
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. Numerical Integration

W
%
=)
O D
X =7v x'=x+6t-v
| =
R = [w]«R R' =R+ 6t [w]«R

Need orthogonalization! 54
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. Numerical Integration: Quaternion

0y

e s

X =1 x' ' =x+6t-v

=

qg="7 q =q+6t-q

55
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. Numerical Integration: Quaternion

0
v
O )
X =7 x' ' =x+6t-v
R |
q=50q q =q+ot-q
o = (0, w) Need Normalization! 56
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. Kinematics vs. Dynamics

Kinematics Dynamics

X,R m’I
v, W p, L

a, a “

X, & F,t

57
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. Linear and Angular Momentum of a Particle

L
1%
X, m
r
o
p=mv Linear momentum of x
L=mrxXv Angular momentum of x w.r.t. o

58
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. Force and Torgue

T=1rXF

59
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. Torque and Angular Momentum

=

T=r <P -
:]'_'_'2:{1]

https://en.wikipedia.org/wiki/Torque

60

Libin Liu - SIST, Peking University GAMES 105 - Fundamentals of Character Animation e



. Rigid Body as a Collection of Particles
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. Moments of a Rigid Body

_ _ /
p—zmivi L, —zmiri X v;
: i

62
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. Angular Moment of a Rigid Body

L, =Zmiri' X V; =Mrc><vc+2miri X V;
i i
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. Angular Moment of a Rigid Body
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. Angular Moment of a Rigid Body
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. Angular Moment of a Rigid Body
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. Angular Moment of a Rigid Body

67
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. Angular Moment of a Rigid Body

—as ap
O —a1

a4 0
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. Angular Moment of a Rigid Body

Moment of Inertia: I = 2 —m; [Ti]i
[
69
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. Moment of Inertia

m=my I[=1I;
® m=my I=2I;
® m=my I=31I
m=my I[=41;

m =My I=5.li.[|

e & @

m =My I=6 .lrﬂ

71
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. Moment of Inertia

- g B - > ¢
https://en.wikipedia.org/wiki/Moment_of inertia
/2

Libin Liu - SIST, Peking University GAMES 105 - Fundamentals of Character Animation e



. Rotation of Moment of Inertia

(Rr) X x =R (r X (RTX))
[Rr]x = R[r]xR"

I = RI,RT [Rr]% = R[r]%RT
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. Principal Axes of Moment of Inertia

)

Eigendecomposition = | = RIGRT

M,I

I, 0 0
IO = O 12 O = diag(ll,lz,lg)
0 0 I,

74
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. Center of Momentum (CoM) Frame

p = Mv, L=lw

75
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. Force on a Rigid Body

76
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. Force on a Rigid Body

T=rXf

77
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. Torque on a Rigid Body

T =777

78
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. Parallel Forces and Torques

T =777

79
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. Center of Momentum (CoM) Frame

30
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. Center of Momentum (CoM) Frame

p = Mv, L=lw
f=Xifi T=2T;
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. Equation of Motion of Rigid Body

Kinematics

X, R
U, W

82
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. Equation of Motion of Rigid Body

X,R,v,w

p = Mv

\R) L=lw

Newton’s Second Law: f = Ma

33
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. Equation of Motion of Rigid Body

X,R,v,w
p = Mv
L=Iw

34
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. Equation of Motion of Rigid Body

X,R,v,w
p = Mv
L=Iw

dp

Newton’s Second Law: e f
. dL

Euler’s laws of motion: e T

85
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. Equation of Motion of Rigid Body

X,R,v,w
p = Mv
L=1w
dp .
Newton’s Second Law: e f ®» Myv=f
. aL .
Euler’s laws of motion: or =7 W Jot+lo=r1

36
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. Equation of Motion of Rigid Body

X,R,v,w A
. d

I =—(RI,RT)
dt

p = Mv

R = RI,RT + RI,RT
L=1w
= [w]xRIRT + RI,RT [w]%
-

lw=wXIw+I(—w X w)

d
Newton’s Second Law: d_lz =f W Mv=f
_ dL
Euler’s laws of motion: Ir =7 W Jo+towXlwo=T1

87
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. Newton—Euler Equations

X,R,v,w

p = mv

L=Iw

R 3 R P (4

38
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. Numerical Integration

"o L Lo el = ]
iL
a0 Do ]+ [ ] = ]

39
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. Rigid Body Simulation

hl 0 L [®Wn+1 — Wn wp X Inwp| |1
& ‘,
In — RnIORZ;

Unt1 = °

Wnptq = *°

$

Xn+1 = Xp + hUp4q

1 _
dn+1 = qn t Ehwn+1q

90
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. A System with Two Links

mi,Ii,xi,Ri,vi, Wi

91
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. A System with Two Links

Libin Liu - SIST, Peking University

myl;

I

mi,Ii,xi,Ri,vi, Wi

0 f1]
w1 X [wq I 5T
0 f2
Wy X [rwo | To

GAMES 105 - Fundamentals of Character Animation
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. A System with Two Links

mi,Ii,xi,Ri,vi, Wi

Mv+Clx,v)=f

93
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. A System with Two Links

SS

e im——

~—— "

Mv+Clx,v)=f

94
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. A System with Two Links and a Joint

mi,Ii,xi,Ri,vi, Wi

Mv+Clx,v)=f

95
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. A System with Two Links and a Joint

mi,Ii,xi,Ri,vi, Wi

Mv+Clx,v)=f+f,

96
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gx)=C

—g(x) =0

gx)=C
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gx)=C
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gix) =C ¥
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. Constraint Force

* Constraint is passive
No energy gain or loss!!!

ferv=0

100
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. Constraint Force

* Constraint is passive
No energy gain or loss!!!

fprrv=0 @& flv=0
s
=J'2

unknown

101
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. Equation of Motion with Constraints

Mv=f+]'A
Ju=20
Un+1 — Un

Libin Liu - SIST, Peking University GAMES 105 - Fundamentals of Character Animation



. Numerical Solution

% — D
Mn+1 n=f+]T/1

JVpe1 =0

gx)=C

103
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. Numerical Solution

Mvn+1h_ Un _ f +]T/1
f
JVnt1 =0
gx)=C Jv, .y = aC — i(xn)

Correction of numerical errors
a: error reduction parameter (ERP)

104
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. Numerical Solution

Mvn+1h_ Un _ f +]T/1
f
JVns1 = by
gx)=C JM~TA = ¢,

v

M~ " + DA = ¢,

f: constraint force mixing (CFM)

105
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. Joint Constraint

mi,Ii,xi,Ri,vi, Wi

X1+R17"1 :x] =x2+R27”2
4/
dt
Vi+w X1y =0, Wy X1y

106

Libin Liu - SIST, Peking University GAMES 105 - Fundamentals of Character Animation e



. Joint Constraint
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. A System with Two Links and a Joint

Xy

mi,Ii,xi,Ri,vi, Wi

My+Clx,v)=f+]J'2

Jv=20

108
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. A System with Two Links and a Joint

Xy

mi,Ii,xi,Ri,vi, Wi

Myl IIZE | 0 1 [A1 [ B
I w1 n w1 X Iyw,q _|T1 n |11 2
m213 1.72 0 fz _13
Lllwy]l Lwy X Lwyl L1l [—[ry]s.
Ju=20

109
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. Different Types of Joints

Hinge joint
Revolute joint Universal joint Ball-and-socket
o
13 7"1 —I3 [rp]x||W1 -0
? ? (%)
W2,

110
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. A System with Many Links Joints

mi,Ii,xi,Ri, Vi, Wi

My+Clx,v)=f+]J'2

Juv=20
111
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112
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. Contact Detection

113
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. Contact Detection

114
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. Penalty-based Contact Model

fn — _kpd — kdvc,J_

115
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. Frictional Contact

Coulomb’s law of friction: |ft| — ,ufn

116
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. Frictional Contact

fn

ft = —ufn
Vc,nH 117
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—kpd — kv )




. Frictional Contact

Coulomb’s law of friction: |ft| < an

How to model static friction??? 118
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. Contact as a Constraint

119

Libin Liu - SIST, Peking University GAMES 105 - Fundamentals of Character Animation .



. Contact as a Constraint

o0 el Lo ) =[] +72
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. Contact as a Constraint

G HE A R

AN

A=0

v, >0=>4A=0

A>0=>v.=0
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. Contact as a Linear Complementary Problem

G HE A R

AN

A=0

v. LA=0

(Mixed) Linear Complementary Problem (LCP)

To solve an LCP:
e.g. Lemke's algorithm — a simplex algorithm
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. Contact as a Linear Complementary Problem

How to deal the friction?

Compuren Gramecs Proceedings, Annual Canlerence Series. 1994

Fast Contact Force Computation for
Nonpenetrating Rigid Bodies
David Baraff

Robotics Institute
Camegie Mellon University

Pitisbargh, PA 15213

Abstract

A new algorithm for computing contact forces between solid
objects with friction is presented. The algorithm allows a mix
of coatact points with static and dynamic friction. In contrast 10

is ot

for sophisticated optimization software packages is eliminated, For
both systems with and withou friction, the algorithm has proven
10 be considerably fastr, simpler. and more reliable than previous

solving linear complementarity problems. It is ot our intention
to reinvent the wheel: however, it i necessary to first understand
Dantzig’s algocithm and why it works for our frictioaless sytems
before going 0 to consider the more general solution algorithm
we propose (o deal with friction. We give a physical oitilon
for Dantzig’s algorithm and discuss its properties and implemes

taion i secton 4, For frictioakes sysiem, ou Impleentation
of Dantzig’s algorithm compares very favorably with the use of
h-gc scale, suphumaml numericaloptmization packages cited by

111

7.8.6]. In particular,

appeoaches 10 the problem. In particular, of the
algorithm by in numerical is quit fea-
sible,

1. Introduction

Jnrecemt ok, we bave xabihed e viailty o wsng syt
thods to simalte rigid body motion with coatact(1.2.3). |
siusions ovotviag only blsterl concrains (Commuonly refered
t0 as “equality constraints”), analytical methods require solving
systems of simultaneous linear equations. Bilateral constraints typ-
ically arise in representing idealized geometric conections such
as universal joints, point-to-surface constraints etc. For sysiems
with contact, unilateral (or “inequality”) coastraints are requiced
to prevent adjoining bodies from interpenctrating. In tum, the

Somsnios s bc wpnesied 1o oot the sl comtnerx
the result is in general an inequalin rained ponlinear mini-
mization problem.

However, analytical techniques for systems with contact have
yet to really catch on in the graphicy/simulation community. We
believe that

with contact
“This paper h ds, one of which
in particular, we present analytical methods for systems with contact
that can be practically implemented by those of us (such as the
author) who are not specialists in rumerical analysis or optimiza-
tion. These methods are simpler, relisble, and faster thar previous
thods used for either systems with friction, or systems without
friction.
Our other goal is 10 extend and improve previous algorithms for
computing contact forces with friction[3). We present a simple, fast

of our

described in Coutle and Dantzigl4] (but attributed to Dantzig) for
Permission to make digital or hard copies of part or
all of this work or personal o classroom use is
‘granted without fee provided that copies are not made
o distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the
first page, To copy otherwise, to republish, to post on
servers, or to redistribute to lms, requires prior
specific permission and/os

SIGGRAPH "94, July 24-. "9 Orl.\ndc\ Flundd

© ACM 1994 ISBN: 0-89791-667-0 ...85.00

three times the work required o solve 2 square linear system of
size n using Gaussian elimination. Most importantly, Dantzig’s
algorithm, and our exteasions 1o it for systems with friction,
sufficiently simple that nonspecialists in numerical programming
can implemen them on their own: this is most assuredly not true
of the previously cited large-scale optimization pckages.
Interactive systems with bilateral constraints are common, and
is 10 reason that moderately complicated interactive simu-
lation with collision and contact cannot be achieved as well. We
stroagly believe that using our algorithas, interactive simalations
with contact and friction are practical. We support this claim by
demonstrating the first known sysiem for interactive simulations
involving contact and 3 correct model of Couloenb friction.

2. Background and Motivation
Likstedi{10) e

setting by
iction forces based o  sinphcadoa o the Coulomb, Hedon
model. Baraff]3) also proposed analytical methods for dealing with
firiction forces and presents algocithms that deal with dynamic fric-
tion (also known as sliding friction) and static friction (also known
as dry friction). The results for dynamic friction were the more
comprehenive of the two, and the paper readily acknowledges that
the method presented for computing contact forces with static fric-
tion (3 Gauss-Seidel-like iterative procedure) was not very relisble.
The method also required an approximation foe three-dimensionsl
systems (bt not for planar systems) that resulted in anisotropic
fiiction. Finally, the resuls presented did not fully exploit earlier
discoveries concerning systems with only dynamic friction, and no
static friction.

In this paper, we present a method for computing contact forc
il bolh dynamic and statc Ticion tat is considersbly more
robust Our method
ey syl (,urm\ and is much simpler and faster
than previous methods. We were extremely surprised o find that
our implementation of the method, applied 1o frictionless e

the use o

mization software pockages, both interms of speed and, especially

David Baraff. SIGGRAPH 94

Fast contact force computation for nonpenetrating
rigid bodies.
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. Simulation of a Rigid Body System

mi,li,xi,Ri, Vi, Wi

I, = R,I,RY f. = Penalty

M (Vs — vn)/h + Cu(m) = f2 'l'.]7'111/1

JnVn+1 = Cp

Xn+1 = Xn + hvp4q

h _
dn+1 = qn T E(‘)n+1q
124

Libin Liu - SIST, Peking University GAMES 105 - Fundamentals of Character Animation e




. Outline

Simulation Basis
* Numerical Integration: Euler methods

Equations of Rigid Bodies
* Rigid Body Kinematics
 Newton-Euler equations

Articulated Rigid Bodies

e Joints and constraints

Contact Models

* Penalty-based contact
* Constraint-based contact

https://www.cs.cmu.edu/~baraff/sigcourse/
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Questions?
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