GAMES 105 Fundamentals of Character Animation

Lecture 06:

Learning-based Character Animation

Libin Liu

School of Intelligence Science and Technology Peking University

Outline

- Recap: interactive character animation
 - Motion Graphs
 - Motion Matching
- Statistical Models of Human Motion
 - Principal Component Analysis
 - Gaussian Models
- Learning-based Models
 - •

Recap: Interactive Animation

How to make a character respond to user command?

How to create interactive animation?

[Heck and Gleicher 2007, Parametric Motion Graphs]

[Heck and Gleicher 2007, Parametric Motion Graphs]

[Heck and Gleicher 2007, Parametric Motion Graphs]

at the end of the current clip: check user input find a nice animation clip play it

.....

Motion Planning with Motion Graph and A* https://www.youtube.com/watch?v=ekx0bXz25Pw

Libin Liu - SIST, Peking University

GAMES 105 - Fundamentals of Character Animation

[Heck and Gleicher 2007, Parametric Motion Graphs]

at the end of the current clip: check user input find a nice animation clip play it

Need a Faster Response?

Motion Graphs / State Machines

at every frame: check user input find a nice next pose update the character

Need a Faster Response?

Motion Graphs / State Machines

- at the end of the current clip:
 - check user input find a nice animation clip
 - play it

Motion Fields / Motion Matching

Motion Fields for Interactive Character Locomotion

Yongjoon Lee^{1,2*} Kevin Wampler^{1†} Gilbert Bernstein¹ Jovan Popović^{1,3} Zoran Popović¹ ¹University of Washington ²Bungie ³Adobe Systems

* SIGGRAPH 2010

Motion Fields for Interactive Character Locomotion

Yongjoon Lee1,2*Kevin Wampler1†Gilbert Bernstein1Jovan Popović1,3Zoran Popović1¹University of Washington²Bungie³Adobe Systems

* SIGGRAPH 2010

Motion Fields for Interactive Character Locomotion

Yongjoon Lee^{1,2*}

Kevin Wampler^{1†} Gilbert Bernstein¹ ¹University of Washington ²Bungie

ernstein¹ Jo ²Bungie

Jovan Popović^{1,3} Zoran Popović¹ ³Adobe Systems

* SIGGRAPH 2010

at every frame:

- check user input
- find N nearest neighbors of the current state
- blend these neighbors according to user input
- update the character

Lee et al. 2010. Motion Fields

Motion Fields

at every frame:

- check user input
- find N nearest neighbors of the current state
- blend these neighbors according to user input
- update the character

Perturbations

Motion Fields

at every frame:

- check user input
- find N nearest neighbors of the current state
- blend these neighbors according to user input
- update the character

Lee et al. 2010. Motion Fields

Lee et al. 2010. Motion Fields

Motion Fields

at every frame:

- check user input
- find N nearest neighbors of the current state
- blend these neighbors according to user input
- update the character

at every frame:

- check user input
- find N nearest neighbors of the current state
- blend these neighbors according to user input
- update the character

at every frame:

- check user input
- find N nearest neighbors of the current state
- blend these neighbors according to user input
- update the character

How?

at every frame:

- check user input
- find N nearest neighbors of the current state
- blend these neighbors according to user input
- update the character

How? Reinforcement learning...

Motion Fields

at every frame:

- check user input
- find N nearest neighbors of the current state
- blend these neighbors according to user input
- update the character

Motion Matching

at every frame:

- check user input
- find the nearest neighbors of the current state according to user input
- smoothly blend current pose to the nearest neighbor pose

• We need a distance function / metric to define the nearest neighbor

• We need a distance function / metric to define the nearest neighbor

$$next_pose = \min_{i \in Dataset} ||x_{curr} - x_i||$$

x: feature vector

• We need a distance function / metric to define the nearest neighbor

$$next_pose = \min_{i \in Dataset} ||x_{curr} - x_i||$$

x: feature vector

- root linear/angular velocity
 - position of end effectors w.r.t. root joint
 - linear/angular velocity of end effectors w.r.t. root joint
 - future heading position/orientation (e.g. in 0.5s, 1.0s, 1.5s, etc.)
 - foot contacts

.....

A possible set of feature vectors:

- We need a smooth motion
 - Only do the search every few frames
 - Smoothly blend current pose to the target pose
 - Inertialized blending (ref. <u>https://www.theorangeduck.com/page/spring-roll-call</u> by Daniel Holden)

- We need a smooth motion
 - Only do the search every few frames
 - Smoothly blend current pose to the target pose
 - Inertialized blending (ref. <u>https://www.theorangeduck.com/page/spring-roll-call</u> by Daniel Holden)
- We need a good performance
 - An efficient data structure for searching
 - e.g. KD-tree
 - A efficient dataset
 - "Dance card"

Libin Liu - SIST, Peking University

GAMES 105 - Fundamentals of Character Animation
Motion Matching

Motion Matching

Statistical Models of Human Motion

What is a natural-looking motion?

What is a natural-looking motion?

What is a natural-looking motion?

The Low-dimensionality of Human Motions

- Coordinated arm/leg movement
- Musculoskeletal structure
- Laws of physics

•••••

The Low-dimensionality of Human Motions

Where a natural motion locates

- A technique for
 - finding out the correlations among dimensions
 - dimensionality reduction

- A technique for
 - finding out the correlations among dimensions
 - dimensionality reduction

- A technique for
 - finding out the correlations among dimensions
 - dimensionality reduction

Projection of x_i on $u : w_i = x_i \cdot u$

Projection of
$$x_i$$
 on $u : w_i = x_i \cdot u$
 w_i
Projection of x_i on $u' : w'_i = x_i \cdot u'$
 w'_i

Libin Liu - SIST, Peking University

Libin Liu - SIST, Peking University

Find a direction \boldsymbol{u} such that $\|\boldsymbol{u}\| = 1$, and the projections of $\{\boldsymbol{x}_i\}$ on $\boldsymbol{u} : w_i = \boldsymbol{x}_i \cdot \boldsymbol{u}$ have the maximal variance:

$$\frac{1}{N}\sum_{i}(w_i-\overline{w})^2$$

Find a direction \boldsymbol{u} such that $\|\boldsymbol{u}\| = 1$, and the projections of $\{\boldsymbol{x}_i\}$ on $\boldsymbol{u} : w_i = \boldsymbol{x}_i \cdot \boldsymbol{u}$ have the maximal variance:

$$\det X = \begin{bmatrix} (\boldsymbol{x}_0 - \overline{\boldsymbol{x}})^T \\ (\boldsymbol{x}_1 - \overline{\boldsymbol{x}})^T \\ \dots \\ (\boldsymbol{x}_N - \overline{\boldsymbol{x}})^T \end{bmatrix}$$

$$\frac{1}{N}\sum_{i}(w_{i}-\overline{w})^{2}$$

Libin Liu - SIST, Peking University

Find a direction \boldsymbol{u} such that $\|\boldsymbol{u}\| = 1$, and the projections of $\{\boldsymbol{x}_i\}$ on $\boldsymbol{u} : w_i = \boldsymbol{x}_i \cdot \boldsymbol{u}$ have the maximal variance:

$$\det X = \begin{bmatrix} (\boldsymbol{x}_0 - \overline{\boldsymbol{x}})^T \\ (\boldsymbol{x}_1 - \overline{\boldsymbol{x}})^T \\ \dots \\ (\boldsymbol{x}_N - \overline{\boldsymbol{x}})^T \end{bmatrix} X$$

$$\frac{1}{N}\sum_{i}(w_{i}-\overline{w})^{2}$$

It can be proved that \boldsymbol{u} is an **eigenvector** of $X^T X$ corresponds to the largest eigenvalue

X

Find a direction \boldsymbol{u} such that $\|\boldsymbol{u}\| = 1$, and the projections of $\{\boldsymbol{x}_i\}$ on $\boldsymbol{u}: w_i = \boldsymbol{x}_i \cdot \boldsymbol{u}$

have the maximal variance:

$$\det X = \begin{bmatrix} (\boldsymbol{x}_0 - \overline{\boldsymbol{x}})^T \\ (\boldsymbol{x}_1 - \overline{\boldsymbol{x}})^T \\ \dots \\ (\boldsymbol{x}_N - \overline{\boldsymbol{x}})^T \end{bmatrix}$$
 X

$$\frac{1}{N}\sum_{i}(w_i-\overline{w})^2$$

It can be proved that \boldsymbol{u} is an **eigenvector** of $X^T X$ corresponds to the largest eigenvalue

X

Note: we can approximate $x_i \approx \overline{x} + w_i u$

• Given a dataset $\{x_i\}, x_i \in \mathbb{R}^N$, then PCA gives

$$\boldsymbol{x}_i = \overline{\boldsymbol{x}} + \sum_{k=1}^n w_{i,k} \boldsymbol{u}_k$$

- $\boldsymbol{u_k}$ is the *k*-th principal component
 - A direction in \mathbb{R}^N along which the projection of $\{x_i\}$ has the k-th maximal variance

•
$$w_{i,k} = (x_i - \overline{x}) \cdot u_k$$
 is the score of x_i on u_k

Libin Liu - SIST, Peking University

• Given a dataset $\{x_i\}, x_i \in \mathbb{R}^N$, the PCA can be computed by apply eigen decomposition on the covariance matrix

$$\Sigma = X^T X = U \begin{bmatrix} \sigma_1^2 & & & \\ & \sigma_2^2 & & \\ & & \ddots & \\ & & & \sigma_N^2 \end{bmatrix} U^T$$

•
$$X = [x_0 - \overline{x}, x_1 - \overline{x}, \dots, x_N - \overline{x}]^T$$

- $\sigma_i \ge \sigma_j \ge 0$ when i < j, corresponds to the Explained Variance
- $U = [u_1, u_2, \dots, u_N]$

Libin Liu - SIST, Peking University

58.4 fps

PCA of Walking

x_i : jo	oint rot	ations	

• Given a dataset $\{x_i\}, x_i \in \mathbb{R}^N$, then PCA gives

$$\boldsymbol{x}_i = \overline{\boldsymbol{x}} + \sum_{k=1}^n w_{i,k} \boldsymbol{u}_k$$

- $\boldsymbol{u_k}$ is the *k*-th principal component
 - A direction in \mathbb{R}^N along which the projection of $\{x_i\}$ has the k-th maximal variance

•
$$w_{i,k} = (x_i - \overline{x}) \cdot u_k$$
 is the score of x_i on u_k

Libin Liu - SIST, Peking University

PCA of Walking

Libin Liu - SIST, Peking University

$$F(\theta) = \frac{1}{2} \sum_{i} \|f_i(\theta) - \widetilde{x}_i\|_2^2 + \frac{\lambda}{2} \|\theta\|_2^2$$

$$\boldsymbol{\theta} = (\boldsymbol{t}_0, R_0, R_1, R_2, \dots)$$

Libin Liu - SIST, Peking University

Character IK with a Reference Pose

$$F(\theta) = \frac{1}{2} \sum_{i} ||f_i(\theta) - \widetilde{x}_i||_2^2$$
$$+ \frac{\lambda}{2} ||\theta - \theta_0||_2^2$$

$$\boldsymbol{\theta} = (\boldsymbol{t}_0, R_0, R_1, R_2, \dots)$$

Character IK with a Motion Prior

$$F(\theta) = \frac{1}{2} \sum_{i} \|f_i(\theta) - \widetilde{x}_i\|_2^2$$

$$+\frac{w}{2}\sum_{k}\left(\frac{(\boldsymbol{\theta}-\overline{\boldsymbol{\theta}})\cdot\boldsymbol{u}_{k}}{\sigma_{k}}\right)^{2}$$

$$\boldsymbol{\theta} = (\boldsymbol{t}_0, R_0, R_1, R_2, \dots)$$

$p(\mathbf{x})$: probability that \mathbf{x} is a natural pose

 $p(\mathbf{x})$: probability that \mathbf{x} is a natural pose

 $p(\mathbf{x})$: probability that \mathbf{x} is a natural pose a set of data points $\{\mathbf{x}_i\} \sim p(\mathbf{x})$

Given a dataset of mocap poses $\{x_i\}$

Libin Liu - SIST, Peking University
Data Distribution

Given a dataset of mocap poses $\{x_i\}$

How to find p(x) ?

Libin Liu - SIST, Peking University

Gaussian Distribution

$$p(\mathbf{x}) = \mathcal{N}(\mu_i, \Sigma_i) = \frac{1}{\sqrt{(2\pi)^k |\Sigma|}} e^{-\frac{1}{2}(\mathbf{x} - \overline{\mathbf{x}})^T \Sigma^{-1}(\mathbf{x} - \overline{\mathbf{x}})}$$

Dataset $\{x_i\}$

Gaussian Distribution

$$p(\mathbf{x}) = \mathcal{N}(\mu_i, \Sigma_i) = \frac{1}{\sqrt{(2\pi)^k |\Sigma|}} e^{-\frac{1}{2}(\mathbf{x} - \overline{\mathbf{x}})^T \Sigma^{-1}(\mathbf{x} - \overline{\mathbf{x}})}$$

Dataset $\{x_i\}$

Maximum Likelihood Estimators (MLE):

X

$$\overline{\boldsymbol{x}} = \frac{1}{N} \sum_{i} \boldsymbol{x}_{i}$$

$$\Sigma = \frac{1}{N} X^T X$$

PCA and Gaussian Distribution

$$p(\mathbf{x}) = \mathcal{N}(\mu_i, \Sigma_i) = \frac{1}{\sqrt{(2\pi)^k |\Sigma|}} e^{-\frac{1}{2}(\mathbf{x} - \overline{\mathbf{x}})^T \Sigma^{-1}(\mathbf{x} - \overline{\mathbf{x}})}$$

Dataset $\{x_i\}$

$$\boldsymbol{x} - \overline{\boldsymbol{x}} = \sum_{k=1}^{n} w_k \boldsymbol{u}_k$$

PCA and Gaussian Distribution

Dataset {
$$x_i$$
}

$$p(x) = \mathcal{N}(\mu_i, \Sigma_i) = \frac{1}{\sqrt{(2\pi)^k |\Sigma|}} e^{-\frac{1}{2}(x-\overline{x})^T \Sigma^{-1}(x-\overline{x})}$$

$$p(x) = \prod_k \frac{1}{\sigma_k \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{w_k}{\sigma_k}\right)^2}$$

$$w_k = (x - \overline{x}) \cdot u_k$$

Libin Liu - SIST, Peking University

Character IK with a Motion Prior

$$F(\boldsymbol{\theta}) = \frac{1}{2} \sum_{i} \|f_i(\boldsymbol{\theta}) - \widetilde{\boldsymbol{x}}_i\|_2^2$$

$$+\frac{w}{2}\sum_{k}\left(\frac{(\boldsymbol{\theta}-\overline{\boldsymbol{\theta}})\cdot\boldsymbol{u}_{k}}{\sigma_{k}}\right)^{2}$$

$$\boldsymbol{\theta} = (\boldsymbol{t}_0, R_0, R_1, R_2, \dots)$$

Character IK with a Motion Prior

$$F(\theta) = \frac{1}{2} \sum_{i} \|f_i(\theta) - \widetilde{x}_i\|_2^2$$

$$-w\log\prod_{k}e^{-\frac{1}{2}\left(\frac{(\theta-\overline{\theta})\cdot u_{k}}{\sigma_{k}}\right)^{2}}$$

$$\boldsymbol{\theta} = (\boldsymbol{t}_0, R_0, R_1, R_2, \dots)$$

Character IK with a Motion Prior

$$F(\theta) = \frac{1}{2} \sum_{i} ||f_{i}(\theta) - \tilde{x}_{i}||_{2}^{2}$$
$$-w \log p(\theta) e^{-\frac{1}{2} \left(\frac{(\theta - \overline{\theta}) \cdot u_{k}}{\sigma_{k}}\right)^{2}}$$
$$\theta = (t_{0}, R_{0}, R_{1}, R_{2}, \dots)$$

Given a motion prior p(x) learned from a set of data points $D = \{x_i\}$, Synthesize a motion x that minimize the objective

 $F(x) = f(x) - w \log p(x)$

Note: x can represent a pose θ or a motion clip \rightarrow a sequence of poses $\{\theta_t\}$ or any features of a motion \rightarrow e.g. w_k in PCA Given a motion prior p(x) learned from a set of data points $D = \{x_i\}$, Synthesize a motion x that minimize the objective

 $F(x) = f(x) - w \log p(x)$

 f(x)
 IK

 Keyframes

 User control

 Environment constraints

Motion Synthesis with a Motion Prior

Synthesizing Physically Realistic Human Motion in Low-Dimensional, Behavior-Specific Spaces

Alla Safonova

Jessica K. Hodgins

Nancy S. Pollard

School of Computer Science Carnegie Mellon University *

*SIGGRAPH 2004

 $p(\mathbf{x})$: motion prior

 $p(\mathbf{x})$: motion prior

 $p(\mathbf{x})$: motion prior

Interactive Generation of Human Animation with Deformable Motion Models

Jianyuan Min Texas A&M University Yen-Lin Chen Jinxiang Chai Texas A&M University Texas A&M University

* SIGGRAPH 2009

Gaussian Mixture Models (GMM)

$$p(\mathbf{x}) = \sum_{i} \phi_{i} \mathcal{N}(\mu_{i}, \Sigma_{i})$$

Motion Synthesis with a Motion Prior

Interactive Generation of Human Animation with Deformable Motion Models

Jianyuan Min Yen-Lin Chen Jinxiang Chai Texas A&M University

Min et al. 2009

Continuous Character Control with Low-Dimensional Embeddings

 Sergey Levine¹
 Jack M. Wang¹
 Alexis Haraux¹
 Zoran Popović²
 Vladlen Koltun¹

 ¹Stanford University
 ² University of Washington

Figure 1: Character controllers created using our approach: animals, karate punching and kicking, and directional walking.

* SIGGRAPH 2012

Gaussian Process Latent Variable Model (GPLVM)

 $p(\mathbf{x})$: motion prior

Libin Liu - SIST, Peking University

Motion Synthesis with a Motion Prior

Continuous Character Control with Low-Dimensional Embeddings

Sergey Levine¹ Jack M. Wang¹ Alexis Haraux¹ Zoran Popović² Vladlen Koltun¹

¹Stanford University ²University of Washington

Levine et al. 2012

Neural networks...

$p(\mathbf{x})$: motion prior

[Starke et al 2020, Local Motion Phases for Learning Multi-Contact Character Movements]

[Henter et al. 2020, MoGlow: Probabilistic and Controllable Motion Synthesis Using Normalising Flows]

[Lee et al 2019, Interactive Character Animation by Learning Multi-Objective Control]

[Holden et al 2020, Learned Motion Matching]

