GAMES 105 Fundamentals of Character Animation

Lecture 05: Data-driven Character Animation

Libin Liu

School of Intelligence Science and Technology Peking University

Outline

- Motion Capture
 - History and modern mocap systems
- Motion Synthesis
 - Motion retargeting
 - Motion transition
 - Motion graph

Motion Capture

How to get motion data?

Keyframe Animation

http://www.theanimatorssurvivalkit.com/

Motion Capture

Motion Capture

- Digitally recording movements of human, animation, and objects
 - Entertainment: games, films, virtual idols, metaverse
 - Sport: professional training, performance optimization
 - Medicine: orthopedics, injury diagnosis and therapy
 - Robotics: tracking and locating

- Study of motions using photography
 - Eadweard Muybridge (1830–1904)
 - "The Horse in Motion" 1878

- Rotoscoping (~1914)
 - Max Fleischer (1883 1972)

[US patent 1242674]

Alice in Wonderland, 1951

- Rotoscoping (~1914)
 - Rotoscope in Animation

Snow White and the Seven Dwarfs, 1939

Alice in Wonderland, 1951

- Rotoscoping (~1914)
 - Rotoscope in Animation

- Rotoscoping (~1914)
 - Rotoscope in Animation

The Princess of Iron Fan (铁扇公主), Wan brothers (万氏兄弟)*,* 1941

GAMES 105 - Fundamentals of Character Animation

Rotoscoping in 3D

Libin Liu - SIST, Peking University

GAMES 105 - Fundamentals of Character Animation

Modern Mocap System

Mechanical Mocap

• Exoskeleton

Inertial Mocap

- Inertial Measurement Unit (IMU)
 - Accelerometers (3dof) + axis gyroscope (3dof)
- Optionally other sensors

- Reflective/light-emitting markers
- Multi-view geometry
- Solve body motions based on marker positions

https://toronto.ubisoft.com/performance-capture/

[Holden 2018 - Robust Solving of Optical Motion Capture Data by Denoising]

Markerless Mocap with Multiple Cameras

Markerless Mocap with Multiple Cameras

Markerless Mocap with Depth Cameras

Motion Estimation with Monocular Videos

[OpenPose, 2D Pose estimation]

[3D Video-based Pose estimation, source: DeepMotion Inc.]

[Yi et al. 2021. TransPose: Real-time 3D Human Translation and Pose Estimation with **Six Inertial Sensors**] 25

Libin Liu - SIST, Peking University

GAMES 105 - Fundamentals of Character Animation

[Meta]

27

Motion Synthesis

How to use motion data?

Motion Data

- Retarget a motion to drive a character with
 - Different number of bones
 - Different bone names
 - Different reference pose
 - Different bone ratios
 - Different skeletal structure

.

- Retarget a motion to drive a character with
 - Different number of bones
 - Different bone names
 - Different reference pose
 - Different bone ratios
 - Different skeletal structure

[Villegas et al. 2021, Contact-Aware Retargeting of Skinned Motion]

.

- A possible retargeting pipeline
 - Map bone names
 - Scale translations
 - Copy or retarget joint rotations to fix reference pose
 - Postprocessing with IK
 - Foot-skating
 - Self penetration

HumanIK in Autodesk Maya

۲

GAMES 105 - Fundamentals of Character Animation

nucl.ai Conference: Ubisoft Toronto "IK Rig" Prototype https://www.youtube.com/watch?v=V4TQSeUpH3Q 3

Libin Liu - SIST, Peking University

GAMES 105 - Fundamentals of Character Animation

35

• IK Rig in Unreal

方 IK Retargeting 、 Retarget Root: pelvis 十 Add New Chain	×			
Chain Name	Start Bone	End Bone	IK Goal	
Spine	spine_01 🗸	spine_05 🗸	None 🗸 🗓	
ArmLeft	upperarm_l 🗸	hand_l 🗸	None 🗸 📋	
ArmRight	upperarm_r 🗸	hand_r 🗸	None 🗸 📋	
Neck	neck_01 🗸	neck_02 🗸	None 🗸 📋	
Head	head 🗸	head 🗸	None 🗸 📋	
LegLeft	thigh_l 🗸	foot_l 🗸	None 🗸 📋	
LegRight	thigh_r 🗸	foot_r 🗸	None 🗸 🗓	
				2

https://docs.unrealengine.com/5.0/en-US/ik-rig-animation-retargeting-in-unreal-engine/ 36

Libin Liu - SIST, Peking University

GAMES 105 - Fundamentals of Character Animation

Motion Transition

• A special coordinate system that moves horizontally with the character with one axis pointing to the "facing direction" of the character

"Facing Frame"

- A special coordinate system that moves horizontally with the character with one axis pointing to the "facing direction" of the character
- Possible definitions of *R*
 - *R* is the y-rotation that aligns the z-axis of the global frame to the heading direction
 - *R* is the y-rotation that aligns x-axis of the global frame to the average direction of the vectors between shoulders and hips
 - Decomposition root rotation as $R_0 = R_y R_{xz}$

 $R = \theta \boldsymbol{e}_{y}$ $\boldsymbol{t} = (t_{x}, 0, t_{z})$

Rotation Decomposition

57

Rotation Decomposition

Rotation Decomposition

Motion Data without Root Translation

Motion Data without Root Translation

Let's bring back gta characters to real life https://www.youtube.com/watch?v=DeutKhta1Uo

Path Fitting

Libin Liu - SIST, Peking University

Motion Composition

- Computationally generating motions according to
 - User control

.

- Objects in the same environment
- Movements of other characters

[Heck and Gleicher 2007, Parametric Motion Graphs]

[Treuille et al. 2007, Near-optimal character animation with continuous control] 69

Motion Graphs

Motion Graphs

Lucas Kovar University of Wisconsin-Madison Michael Gleicher* University of Wisconsin-Madison Frédéric Pighin[†] University of Southern California Institute for Creative Technologies

Motion Graphs

Segment Motion Data

Libin Liu - SIST, Peking University
Segment Motion Data

• Where to segment?

- Distance map
 - Each pixel represents the difference between a pair of poses
 - Local minima are potential transition point

Lucas Kovar, Michael Gleicher, and Frédéric Pighin. 2002. *Motion graphs*. *ACM Trans. Graph.* 21, 3 (July 2002),

Motion Synthesis

- State-machines
 - Nodes represent motion clips
 - Edges represent potential transitions
 - Transitions are triggered when necessary
 - User input
 - Clip end
 - Check immediate connections for the next clip
 - May need deeper search

Interactive Animation Pipeline

check user input check environment check other characters determine transition obtain next pose post-process pose update character update environment

........

Example: Path Fitting

[Motion Graphs]

Libin Liu - SIST, Peking University

GAMES 105 - Fundamentals of Character Animation

Example: Path Fitting

[Motion Graphs]

Libin Liu - SIST, Peking University

GAMES 105 - Fundamentals of Character Animation

Motion Matching?

- Clip \rightarrow Pose
- Short clip →
 "Raw" and long motion data

Outline

- Motion Capture
 - History and modern mocap systems
- Motion Synthesis
 - Motion retargeting
 - Motion transition
 - Motion graph

